Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 4, pp. 49-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of construction an asymptotic expansion of a difference solution in the neighborhood of strong discontinuity is proposed. The method is based on the concept of the determining coefficient of an asymptotic expansion, which is used to construct a nonclassical differential approximations of difference scheme. The method is described by using general form of explicit two-level in time linear difference scheme approximating the linear transport equation. Asymptotic expansions of the difference solution are constructed for the scheme with the artificial viscosity for different values of viscosity coefficient. It is shown that the structure of the difference solution at the strong discontinuity is adequate accuracy described by the constructed expantions.
Keywords: hyperbolic systems, discontinuous solutions, finite-difference schemes, differential approximations, asymptotic expansions.
@article{VNGU_2007_7_4_a3,
     author = {O. A. Kovyrkina and V. V. Ostapenko},
     title = {Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {49--73},
     year = {2007},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
TI  - Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 49
EP  - 73
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/
LA  - ru
ID  - VNGU_2007_7_4_a3
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%T Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 49-73
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/
%G ru
%F VNGU_2007_7_4_a3
O. A. Kovyrkina; V. V. Ostapenko. Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 4, pp. 49-73. http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/

[1] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya (primenenie k gazovoi dinamike), Nauka, Novosibirsk, 1985 | MR | Zbl

[2] Davydov Yu. M., Differentsialnye priblizheniya i predstavleniya raznostnykh skhem, MFTI, M., 1981

[3] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR

[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[5] Friedrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Nat. Acad. Sci. USA, 68:8 (1971), 1686–1688 | DOI | MR | Zbl

[6] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993 | MR

[7] Atavin A. A., Gladyshev M. T., Shugrin S. M., “O razryvnykh techeniyakh v otkrytykh ruslakh”, Dinamika sploshnoi sredy, 1975, no. 22, 37–64 | MR

[8] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[9] Lax P., Wendroff B., “Systems of conservation laws”, Comm. Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[10] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Comm. Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[11] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Mat. sbornik, 47:3 (1959), 271–306 | MR | Zbl

[12] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[13] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[14] Sweby P. K., “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Anal., 21 (1984), 995–1011 | DOI | MR | Zbl

[15] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[16] Van Leer B., “Toward the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | MR

[17] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Mat. modelirovanie, 3:9 (1991), 95–103 | MR

[18] Ostapenko V. V., “Ob ekvivalentnykh oppedeleniyakh ponyatiya konsepvativnosti dlya konechno-paznostnykh skhem”, Zhurn. vych. mat. i mat. fiz., 29:8 (1989), 1114–1128 | MR

[19] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zhurn. vych. mat. i mat. fiz., 30:9 (1990), 1405–1417 | MR

[20] Zhukov A. I., “Predelnaya teorema dlya raznostnykh operatorov”, Uspekhi mat. nauk, 14:5 (1959), 129–136 | MR | Zbl

[21] Ivanov M. Ya., Koretskii V. V., Kurochkina N. Ya., “Issledovanie svoistv raznostnykh skhem skvoznogo scheta pervogo poryadka approksimatsii”, Chisl. met. mekh. spl. sr., 11:1 (1980), 81–110 | MR

[22] Ivanov M. Ya., “K analizu mekhanizma ostsillyatsii chislennykh reshenii uravnenii gidrodinamiki”, Zhurn. vych. mat. i mat. fiz., 22:2 (1982), 411–417 | MR | Zbl

[23] Ostapenko V. V., “Razlozhenie raznostnogo resheniya na fronte udarnoi volny”, Dokl. AN SSSR, 320:2 (1991), 275–279 | Zbl

[24] Ostapenko V. V., “Asimptoticheskoe razlozhenie raznostnogo resheniya udarnoi volny”, Mat. modelir., 5:2 (1993), 94–103 | Zbl

[25] Ostapenko V. V., “O razlozhenii raznostnogo resheniya na fronte beguschei udarnoi volny”, Zhurn. vych. mat. i mat. fiz., 31:2 (1992), 296–310

[26] Pavlov A. A., “O razlozhenii raznostnogo resheniya na fronte statsionarnogo gidravlicheskogo pryzhka”, Vych. met. prikl. gidrodinamiki, 106 (1993), 185–191 | Zbl

[27] Ostapenko V. V., “Razlozhenie raznostnogo resheniya skhemy «krest» uravnenii gazovoi dinamiki na fronte udarnoi volny”, Modelirovanie v mekhanike, 6(23):2 (1992), 108–116 | Zbl

[28] Ostapenko V. V., “Razlozhenie raznostnogo resheniya na fronte udarnoi volny (sluchai kvadratichnoi vyazkosti)”, Dinamika sploshnoi sredy, 106 (1994), 121–135

[29] Kovyrkina O. A., Ostapenko V. V., “Postroenie asimptotiki raznostnogo resheniya na osnove neklassicheskikh differentsialnykh priblizhenii”, Zhurn. vych. mat. i mat. fiz., 45:1 (2005), 88–109 | MR | Zbl

[30] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[31] Ostapenko V. V., “O monotonnosti raznostnykh skhem”, Sib. mat. zhurn., 39:5 (1998), 1111–1126 | MR | Zbl