@article{VNGU_2007_7_4_a3,
author = {O. A. Kovyrkina and V. V. Ostapenko},
title = {Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {49--73},
year = {2007},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/}
}
TY - JOUR AU - O. A. Kovyrkina AU - V. V. Ostapenko TI - Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2007 SP - 49 EP - 73 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/ LA - ru ID - VNGU_2007_7_4_a3 ER -
%0 Journal Article %A O. A. Kovyrkina %A V. V. Ostapenko %T Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2007 %P 49-73 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/ %G ru %F VNGU_2007_7_4_a3
O. A. Kovyrkina; V. V. Ostapenko. Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 4, pp. 49-73. http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a3/
[1] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya (primenenie k gazovoi dinamike), Nauka, Novosibirsk, 1985 | MR | Zbl
[2] Davydov Yu. M., Differentsialnye priblizheniya i predstavleniya raznostnykh skhem, MFTI, M., 1981
[3] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR
[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[5] Friedrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Nat. Acad. Sci. USA, 68:8 (1971), 1686–1688 | DOI | MR | Zbl
[6] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993 | MR
[7] Atavin A. A., Gladyshev M. T., Shugrin S. M., “O razryvnykh techeniyakh v otkrytykh ruslakh”, Dinamika sploshnoi sredy, 1975, no. 22, 37–64 | MR
[8] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[9] Lax P., Wendroff B., “Systems of conservation laws”, Comm. Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[10] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Comm. Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl
[11] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Mat. sbornik, 47:3 (1959), 271–306 | MR | Zbl
[12] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[13] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[14] Sweby P. K., “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Anal., 21 (1984), 995–1011 | DOI | MR | Zbl
[15] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[16] Van Leer B., “Toward the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | MR
[17] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Mat. modelirovanie, 3:9 (1991), 95–103 | MR
[18] Ostapenko V. V., “Ob ekvivalentnykh oppedeleniyakh ponyatiya konsepvativnosti dlya konechno-paznostnykh skhem”, Zhurn. vych. mat. i mat. fiz., 29:8 (1989), 1114–1128 | MR
[19] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zhurn. vych. mat. i mat. fiz., 30:9 (1990), 1405–1417 | MR
[20] Zhukov A. I., “Predelnaya teorema dlya raznostnykh operatorov”, Uspekhi mat. nauk, 14:5 (1959), 129–136 | MR | Zbl
[21] Ivanov M. Ya., Koretskii V. V., Kurochkina N. Ya., “Issledovanie svoistv raznostnykh skhem skvoznogo scheta pervogo poryadka approksimatsii”, Chisl. met. mekh. spl. sr., 11:1 (1980), 81–110 | MR
[22] Ivanov M. Ya., “K analizu mekhanizma ostsillyatsii chislennykh reshenii uravnenii gidrodinamiki”, Zhurn. vych. mat. i mat. fiz., 22:2 (1982), 411–417 | MR | Zbl
[23] Ostapenko V. V., “Razlozhenie raznostnogo resheniya na fronte udarnoi volny”, Dokl. AN SSSR, 320:2 (1991), 275–279 | Zbl
[24] Ostapenko V. V., “Asimptoticheskoe razlozhenie raznostnogo resheniya udarnoi volny”, Mat. modelir., 5:2 (1993), 94–103 | Zbl
[25] Ostapenko V. V., “O razlozhenii raznostnogo resheniya na fronte beguschei udarnoi volny”, Zhurn. vych. mat. i mat. fiz., 31:2 (1992), 296–310
[26] Pavlov A. A., “O razlozhenii raznostnogo resheniya na fronte statsionarnogo gidravlicheskogo pryzhka”, Vych. met. prikl. gidrodinamiki, 106 (1993), 185–191 | Zbl
[27] Ostapenko V. V., “Razlozhenie raznostnogo resheniya skhemy «krest» uravnenii gazovoi dinamiki na fronte udarnoi volny”, Modelirovanie v mekhanike, 6(23):2 (1992), 108–116 | Zbl
[28] Ostapenko V. V., “Razlozhenie raznostnogo resheniya na fronte udarnoi volny (sluchai kvadratichnoi vyazkosti)”, Dinamika sploshnoi sredy, 106 (1994), 121–135
[29] Kovyrkina O. A., Ostapenko V. V., “Postroenie asimptotiki raznostnogo resheniya na osnove neklassicheskikh differentsialnykh priblizhenii”, Zhurn. vych. mat. i mat. fiz., 45:1 (2005), 88–109 | MR | Zbl
[30] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR
[31] Ostapenko V. V., “O monotonnosti raznostnykh skhem”, Sib. mat. zhurn., 39:5 (1998), 1111–1126 | MR | Zbl