Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 4, pp. 27-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Banach space $CD_0(Q,\mathcal{X})=C(Q,\mathcal{X})+c_0(Q,\mathcal{X})$ is considered whose elements are the sums of continuous and “discrete” sections of a Banach bundle $\mathcal{X}$ over a compact Hausdorff space $Q$ without isolated points. As is known, $CD_0(Q,\mathcal{X})$ is isometric to the space $C(\tilde{Q},\tilde{\mathcal{X}})$ of continuous sections of a Banach bundle $\tilde{\mathcal{X}}$ over the set $\tilde{Q}=Q\times\{0,1\}$ endowed with a special topology. The connections are clarified between $\mathcal{X}$ and $\tilde{\mathcal{X}}$ related to subbundles as well as to bundles obtained by a continuous change of variable and by the restriction onto a topological subspace. In addition, we introduce and study the space $CD_0[\mathcal{X},\mathcal{Y}]$ of $CD_0$-homomorphisms of Banach bundles $\mathcal{X}$ and $\mathcal{Y}$ and demonstrate that it possesses certain properties analogous to those of the space of $CD_0$-sections.
@article{VNGU_2007_7_4_a2,
     author = {A. E. Gutman and A. V. Koptev},
     title = {Spaces of $CD_0$-sections and $CD_0$-homomorphisms of {Banach} bundles},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {27--48},
     year = {2007},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - A. V. Koptev
TI  - Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 27
EP  - 48
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/
LA  - ru
ID  - VNGU_2007_7_4_a2
ER  - 
%0 Journal Article
%A A. E. Gutman
%A A. V. Koptev
%T Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 27-48
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/
%G ru
%F VNGU_2007_7_4_a2
A. E. Gutman; A. V. Koptev. Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 4, pp. 27-48. http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/

[1] Alpai Sh., Erdzhan Z., “Zametka o prostranstvakh $CD_0(K)$”, Sib. mat. zhurn., 47:3 (2006), 514–517 | MR | Zbl

[2] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 63–211 | Zbl

[3] Gutman A. E., Koptev A. V., “Prostranstva $CD_0$-funktsii i udvoenie po Aleksandrovu”, Vladikavkazskii mat. zhurn., 9:3 (2007), 11–21

[4] Koptev A. V., “Neskolko klassov banakhovykh rassloenii s nepreryvnymi slabo nepreryvnymi secheniyami”, Sib. mat. zhurn., 45:3 (2004), 600–612 | MR | Zbl

[5] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003 | MR

[6] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[7] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N.S., 2:3 (1991), 257–274 | DOI | MR | Zbl

[8] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital $AM$-spaces”, J. Math. Anal. Appl., 180:2 (1993), 398–411 | DOI | MR | Zbl

[9] Abramovich Y. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$, II”, Quart. J. Math. Oxford Ser. 2, 44:175 (1993), 257–270 | DOI | MR | Zbl

[10] Alpay Ş., Ercan Z., “$CD_0(K,E)$ and $CD_\omega(K,E)$-spaces as Banach lattices”, Positivity, 4:3 (2000), 213–225 | DOI | MR | Zbl

[11] Ercan Z., “A concrete description of $CD_0(K)$-spaces as $C(X)$-spaces and its applications”, Proc. Amer. Math. Soc., 132 (2004), 1761–1763 | DOI | MR | Zbl

[12] Gierz G., Bundles of Topological Vector Spaces and Their Duality, Lecture Notes in Math., 955, Springer, Berlin, 1982 | MR | Zbl

[13] Hõim T., Robbins D. A., “Section spaces of Banach bundles which generalize some function spaces”, Siberian Adv. Math., 16:3 (2006), 71–81 | MR

[14] Troitsky V. G., “On $CD_0(K)$-spaces”, Vladikavkazskii mat. zhurn., 6:1 (2004), 71–73 | MR | Zbl