@article{VNGU_2007_7_4_a2,
author = {A. E. Gutman and A. V. Koptev},
title = {Spaces of $CD_0$-sections and $CD_0$-homomorphisms of {Banach} bundles},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {27--48},
year = {2007},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/}
}
TY - JOUR AU - A. E. Gutman AU - A. V. Koptev TI - Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2007 SP - 27 EP - 48 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/ LA - ru ID - VNGU_2007_7_4_a2 ER -
A. E. Gutman; A. V. Koptev. Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 4, pp. 27-48. http://geodesic.mathdoc.fr/item/VNGU_2007_7_4_a2/
[1] Alpai Sh., Erdzhan Z., “Zametka o prostranstvakh $CD_0(K)$”, Sib. mat. zhurn., 47:3 (2006), 514–517 | MR | Zbl
[2] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 63–211 | Zbl
[3] Gutman A. E., Koptev A. V., “Prostranstva $CD_0$-funktsii i udvoenie po Aleksandrovu”, Vladikavkazskii mat. zhurn., 9:3 (2007), 11–21
[4] Koptev A. V., “Neskolko klassov banakhovykh rassloenii s nepreryvnymi slabo nepreryvnymi secheniyami”, Sib. mat. zhurn., 45:3 (2004), 600–612 | MR | Zbl
[5] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003 | MR
[6] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[7] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N.S., 2:3 (1991), 257–274 | DOI | MR | Zbl
[8] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital $AM$-spaces”, J. Math. Anal. Appl., 180:2 (1993), 398–411 | DOI | MR | Zbl
[9] Abramovich Y. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$, II”, Quart. J. Math. Oxford Ser. 2, 44:175 (1993), 257–270 | DOI | MR | Zbl
[10] Alpay Ş., Ercan Z., “$CD_0(K,E)$ and $CD_\omega(K,E)$-spaces as Banach lattices”, Positivity, 4:3 (2000), 213–225 | DOI | MR | Zbl
[11] Ercan Z., “A concrete description of $CD_0(K)$-spaces as $C(X)$-spaces and its applications”, Proc. Amer. Math. Soc., 132 (2004), 1761–1763 | DOI | MR | Zbl
[12] Gierz G., Bundles of Topological Vector Spaces and Their Duality, Lecture Notes in Math., 955, Springer, Berlin, 1982 | MR | Zbl
[13] Hõim T., Robbins D. A., “Section spaces of Banach bundles which generalize some function spaces”, Siberian Adv. Math., 16:3 (2006), 71–81 | MR
[14] Troitsky V. G., “On $CD_0(K)$-spaces”, Vladikavkazskii mat. zhurn., 6:1 (2004), 71–73 | MR | Zbl