Solution to first boundary-value problem for weakly degenerating elliptic equation using finite-element method
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 73-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with numerical solution to first boundary-value problem for degenerate 2D elliptic equation using finite-element method. Degeneration of the operator on a part of the boundary requires using weighted functional spaces to analyze variational statement, build difference scheme and prove convergence. We prove that for finite-element method with piece-wise linear elements convergence rate is not worse than in the case of non-degenerating equation. In the last section we demonstrate numerical example to confirm convergence rate.
@article{VNGU_2007_7_3_a4,
     author = {V. O. Pirogov and M. V. Urev},
     title = {Solution to first boundary-value problem for weakly degenerating elliptic equation using finite-element method},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {73--85},
     year = {2007},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a4/}
}
TY  - JOUR
AU  - V. O. Pirogov
AU  - M. V. Urev
TI  - Solution to first boundary-value problem for weakly degenerating elliptic equation using finite-element method
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 73
EP  - 85
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a4/
LA  - ru
ID  - VNGU_2007_7_3_a4
ER  - 
%0 Journal Article
%A V. O. Pirogov
%A M. V. Urev
%T Solution to first boundary-value problem for weakly degenerating elliptic equation using finite-element method
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 73-85
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a4/
%G ru
%F VNGU_2007_7_3_a4
V. O. Pirogov; M. V. Urev. Solution to first boundary-value problem for weakly degenerating elliptic equation using finite-element method. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 73-85. http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a4/

[1] Gusman Yu. A., Oganesyan L. A., “Otsenki skhodimosti konechno-raznostnykh skhem dlya vyrozhdennykh ellipticheskikh uravnenii”, Zhurn. vychisl. mat. i mat. fiziki, 5:2 (1965), 351–357 | MR

[2] Urev M. V., “Skhodimost metoda konechnykh elementov dlya osesimmetrichnoi zadachi magnitostatiki”, Sib. zhurn. vychisl. mat., 9:1 (2006), 63–79 | MR | Zbl

[3] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987

[4] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979

[5] Nikolskii S. M., Lizorkin P. I., Miroshin N. V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. vuzov. Matematika, 1988, no. 8, 4–30

[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[7] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[8] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[9] Ilin V. P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatlit, M., 1995 | MR