Branching of solutions of gene networks mathematical models
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 59-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One class of the systems of odinary differential equations is considered. The numerical research of dependence of the steady-state solutions by the parameter in neighbourhood of the branching point are gave. The numerical algorithm of cunstraction of the solutions dependence by the parameter in the neighbourhood of the branching point with finding all solutions are proposed.
@article{VNGU_2007_7_3_a3,
     author = {I. M. Peshkov},
     title = {Branching of solutions of gene networks mathematical models},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {59--72},
     year = {2007},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a3/}
}
TY  - JOUR
AU  - I. M. Peshkov
TI  - Branching of solutions of gene networks mathematical models
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 59
EP  - 72
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a3/
LA  - ru
ID  - VNGU_2007_7_3_a3
ER  - 
%0 Journal Article
%A I. M. Peshkov
%T Branching of solutions of gene networks mathematical models
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 59-72
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a3/
%G ru
%F VNGU_2007_7_3_a3
I. M. Peshkov. Branching of solutions of gene networks mathematical models. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 59-72. http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a3/

[1] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[2] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[3] Arnold V. I., “Lektsii o bifurkatsiyakh i versalnykh semeistvakh”, UMN, XVII:5(167) (1972), 119–185

[4] Malinetskii G. G., Khaos. Struktury. Vychislitelnyi eksperiment, URSS, M., 2002

[5] Likhoshvai V. A., Matushkin Yu. G., Fadeev C. I., “Zadachi teorii funktsionirovaniya gennykh setei”, Sib. zhurn. industr. mat., VI:2(14) (2003), 64–80

[6] Likhoshvai V. A., Fadeev C. I., “O gipoteticheskikh gennykh setyakh”, Sib. zhurn. industr. mat., VI:3(15) (2003), 134–153 | Zbl

[7] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[8] Lyapunov A. M., Sobr. soch., v. 4, Izd-vo AN SSSR, M., 1959

[9] Schmidt E., “Theorie linearen und nichtlinearen Integralgleichungen. Teil 3: Über die Auflösungen der nichtlinearen Integraleichungen und die Verzweigung ihrer Lösungen”, Math. Ann., 65 (1908), 370–399 | DOI | MR | Zbl

[10] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969 | MR

[11] Babich M. D., Shevchuk L. B., “Ob odnom algoritme priblizhennogo resheniya sistem nelineinykh uravnenii”, Kibernetika, 1982, no. 2, 74–79

[12] Kholodniok M., Klich A., Kubichek M. i dr., Metody analiza nelineinykh dinamicheskikh modelei, Mir, M., 1991

[13] Fadeev S. I., Pokrovskaya S. A., Berezin A. Yu., Gainova I. A., Paket programm STEP dlya chislennogo issledovaniya sistem nelineinykh uravnenii i avtonomnykh sistem obschego vida, NGU, Novosibirsk, 1998

[14] Nemytskii V. V., “Ob odnom metode razyskaniya vsekh reshenii nelineinykh operatornykh uravnenii”, DAN SSSR, 131:4 (1960), 746–747 | MR | Zbl