On linear representations of some extensions
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 45-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Yu. I. Merzljakov developed a method of splittable coordinates which helps to verify the linearity of some groups, he established some fundamental results using this method. 
In this paper we use the method of splittable coordinates and find some sufficient condition under which the semi–direct product of two linear groups is linear. As consequence we get linearity of some HNN-extensions of a free group, linearity of the holomorph of the braid group $B_n$, $n\geqslant 2$, and free group $F_2$ and linearity of some Artin groups. In all cases we construct faithful linear representations in the explicit form.
			
            
            
            
          
        
      @article{VNGU_2007_7_3_a2,
     author = {V. G. Bardakov and O. V. Bryukhanov},
     title = {On linear representations of some extensions},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--58},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a2/}
}
                      
                      
                    V. G. Bardakov; O. V. Bryukhanov. On linear representations of some extensions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 45-58. http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a2/