Conservative extensions of models with weakly o-minimal theories
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 13-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M\prec N$. It is said that a pair of models $(M,N)$ is conservative pair and $N$ is conservative extension of $M$ if for any finite tuple of elements $\overline{\alpha}$ from $N$, $\mathrm{tp}(\overline{\alpha}|M)$ is definable. We say that elementary extension $N$ of $M$ is $D$-good if any definable $q\in S(M\cup\overline{\alpha})$ ($\overline{\alpha}\in N\setminus M$) is realized in $N$ and $N$ is $CD$-good if any non-isolated one-type $q\in S_1(M\cup\overline{\alpha})$ ($\overline{\alpha}\in N\setminus M$), which is determined (approximated) by definable $\phi$-type, is realized in $N$. We prove that any model $M$ of any weakly o-minimal theory except one, theory of discrete order with ends, has conservative extension. The central point in our paper is the criterion of the existence of the $CD$-$\omega$-saturated conservative extension of an arbitrary model of weakly o-minimal theory (Theorem 2). As corollary of this proof it follows the existence of $CD$-$\omega$-saturated conservative extension for any model of any weakly o-minimal theory except one and the results on omitting of natural family of definable one-types and all non-definable types (Corollary 5). The existence of conservative and $CD$-$\omega$-saturated conservative extensions for o-minimal theories have been proved accordingly in D. Marker, “Omitting types in o-minimal theories”, The Journal of Symbolic Logic, Vol. 51(1986), P. 63–74., Y. Baisalov, B. Poizat, “Paires de structures o-minimales”, The Journal of Symbolic Logic, Vol. 63(1998), P. 570–578.
@article{VNGU_2007_7_3_a1,
     author = {B. S. Baizhanov},
     title = {Conservative extensions of models with weakly o-minimal theories},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {13--44},
     year = {2007},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/}
}
TY  - JOUR
AU  - B. S. Baizhanov
TI  - Conservative extensions of models with weakly o-minimal theories
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 13
EP  - 44
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/
LA  - ru
ID  - VNGU_2007_7_3_a1
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%T Conservative extensions of models with weakly o-minimal theories
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 13-44
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/
%G ru
%F VNGU_2007_7_3_a1
B. S. Baizhanov. Conservative extensions of models with weakly o-minimal theories. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 13-44. http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/

[1] Baizhanov B. S., “Obogaschenie o-minimalnoi modeli unarnymi vypuklymi predikatami”, Issledovaniya v teorii algebraicheskikh sistem, Karagandinskii gos. un-t, Karaganda, 1995, 3–23

[2] Baizhanov B. S., “Pary modelei i svoistvo NBAM”, Proceedings of Informatics and Control Problems Institute, Gylym, Almaty, 1995, 81–89

[3] Baizhanov B. S., “One-types in weakly o-minimal theories”, Proceedings of Informatics and Control Problems Institute, Gylym, Almaty, 1996, 77–90

[4] Baizhanov B. S., Classification of one-types in weakly o-minimal theories and its corollaries, preprint, 1996 | MR

[5] Baizhanov B. S., “Orthogonality of one-types in weakly o-minimal theories”, Algebra and Model Theory II, NGTU, Novosibirsk, 1999, 3–28 | MR

[6] Baizhanov B. S., “Expansions of a model of a weakly o-minimal theory by family of convex unary predicates”, J. of Symbolic Logic, 66 (2001), 1382–1414 | DOI | MR | Zbl

[7] Baizhanov B. S., “Opredelimost 1-tipov v slabo o-minimalnykh teoriyakh”, Mat. trudy, 8:2 (2005), 3–38

[8] Baizhanov B. S., Baldwin J. T., “Local Homogeneity”, J. of Symbolic Logic, 69 (2004), 1243–1260 | DOI | MR | Zbl

[9] Baldwin J. T., Fundamentals of Stability Theory, Springer-Verlag, N.Y., 1988 | MR | Zbl

[10] Baldwin J. T., Benedikt M., “Stability theory, permutations of indiscernibles, and embedded finite models”, Transactions of The American Mathematical Society, 352 (2000), 4937–4969 | DOI | MR | Zbl

[11] Ben-Yaacov I., Pilaly A., Vassiliev E., Lovely pairs of models, preprint, 2002

[12] Bouscaren E., “Dimensional order property and pairs of models”, Annals of Pure and Applied Logic, 41 (1989), 205–231 | DOI | MR | Zbl

[13] Buechler S., “Pseudo-proective strongly minimal sets are locally projective”, J. of Symbolic Logic, 56 (1991), 1184–1194 | DOI | MR | Zbl

[14] Casanova E., Ziegler M., “Stable theories with a new predicate”, J. of Symbolic Logic, 66 (2001), 1127–1140 | DOI | MR | Zbl

[15] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[16] Goncharov S. S., “Totalno transtsendentnaya razreshimaya teoriya bez konstruktiviziruemykh odnorodnykh modelei”, Algebra i logika, 19:2 (1980), 137–149 | MR | Zbl

[17] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[18] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Nauka, M., 1979 | MR

[19] Hodges W., A Shorter Model Theory, Cambridge University Press, 1997 | MR

[20] Knight J., Pillay A., Steinhorn Ch., “Definable sets in ordered structures, II”, Transactions of The American Mathematical Society, 295 (1986), 593–605 | DOI | MR | Zbl

[21] Lascovski M., Steinhorn Ch., “On o-minimal expansions of archimedian ordered groups”, J. of Symbolic Logic, 60 (1995), 817–831 | DOI | MR

[22] Macpherson D., Marker D., Steinhorn Ch., “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352 (2000), 5435–5483 | DOI | MR | Zbl

[23] Marker D., “Omitting types in o-minimal theories”, J. of Symbolic Logic, 51 (1986), 63–74 | DOI | MR | Zbl

[24] Marker D., Steinhorn Ch., “Definable types in o-minimal theories”, J. of Symbolic Logic, 59 (1994), 185–198 | DOI | MR | Zbl

[25] Mayer L., “Vaught's conjecture for o-minimal theories”, J. of Symbolic Logic, 53 (1988), 146–159 | DOI | MR | Zbl

[26] Paliutin E. A., “Number of models in complete varieties”, Logic, Methodology and Philosophy of Sciences, v. VI, North-Holland, Amsterdam, 1980, 203–217

[27] Pillay A., “Definability of types, and pairs of o-minimal structures”, J. of Symbolic Logic, 59 (1994), 1400–1409 | DOI | MR | Zbl

[28] Pillay A., Steinhorn Ch., “Definable sets in ordered structures, I”, Transactions of The American Mathematical Society, 295 (1986), 565–592 | DOI | MR | Zbl

[29] Pillay A., Steinhorn Ch., “Definable sets in ordered structures, III”, Transactions of The American Mathematical Society, 300 (1988), 469–476 | DOI | MR

[30] B. Poizat, “Pairs de structure stables”, J. of Symbolic Logic, 48 (1983), 239–249 | DOI | MR | Zbl

[31] Shelah S., “Uniqueness and characterization of prime models over sets for totally transcendental first-order theories”, J. of Symbolic Logic, 37 (1972), 107–113 | DOI | MR | Zbl

[32] Shelah S., Classification Theory and the Number of Non-Isomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl

[33] Baisalov Y., Poizat B., “Paires de structures o-minimales”, J. of Symbolic Logic, 63 (1998), 570–578 | DOI | MR | Zbl