Conservative extensions of models with weakly o-minimal theories
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 13-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M\prec N$. It is said that a pair of models $(M,N)$ is conservative pair and $N$ is conservative extension of $M$ if for any finite tuple of elements $\overline{\alpha}$ from $N$, $\mathrm{tp}(\overline{\alpha}|M)$ is definable. We say that elementary extension $N$ of $M$ is $D$-good if any definable $q\in S(M\cup\overline{\alpha})$ ($\overline{\alpha}\in N\setminus M$) is realized in $N$ and $N$ is $CD$-good if any non-isolated one-type $q\in S_1(M\cup\overline{\alpha})$ ($\overline{\alpha}\in N\setminus M$), which is determined (approximated) by definable $\phi$-type, is realized in $N$. We prove that any model $M$ of any weakly o-minimal theory except one, theory of discrete order with ends, has conservative extension. The central point in our paper is the criterion of the existence of the $CD$-$\omega$-saturated conservative extension of an arbitrary model of weakly o-minimal theory (Theorem 2). As corollary of this proof it follows the existence of $CD$-$\omega$-saturated conservative extension for any model of any weakly o-minimal theory except one and the results on omitting of natural family of definable one-types and all non-definable types (Corollary 5). The existence of conservative and $CD$-$\omega$-saturated conservative extensions for o-minimal theories have been proved accordingly in D. Marker, “Omitting types in o-minimal theories”, The Journal of Symbolic Logic, Vol. 51(1986), P. 63–74., Y. Baisalov, B. Poizat, “Paires de structures o-minimales”, The Journal of Symbolic Logic, Vol. 63(1998), P. 570–578.
@article{VNGU_2007_7_3_a1,
     author = {B. S. Baizhanov},
     title = {Conservative extensions of models with weakly o-minimal theories},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {13--44},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/}
}
TY  - JOUR
AU  - B. S. Baizhanov
TI  - Conservative extensions of models with weakly o-minimal theories
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 13
EP  - 44
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/
LA  - ru
ID  - VNGU_2007_7_3_a1
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%T Conservative extensions of models with weakly o-minimal theories
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 13-44
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/
%G ru
%F VNGU_2007_7_3_a1
B. S. Baizhanov. Conservative extensions of models with weakly o-minimal theories. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 3, pp. 13-44. http://geodesic.mathdoc.fr/item/VNGU_2007_7_3_a1/