On some nonlinear dynamical systems modelling asymmetric gene networks
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 2, pp. 19-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a wide class of 3-dimensional nonlinear dynamical systems as models of asymmetric gene networks functioning. The networks are being considered with negative feedbacks and with different regulation mechanisms. For these dynamical systems, geometric and topological characteristics of their phase portraits are studied, necessary and sufficient conditions of periodic trajectories existence are obtained, also Andronov–Hopf bifurcations are described.
@article{VNGU_2007_7_2_a1,
     author = {Yu. A. Gaydov and V. P. Golubyatnikov},
     title = {On some nonlinear dynamical systems modelling asymmetric gene networks},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {19--27},
     year = {2007},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Gaydov
AU  - V. P. Golubyatnikov
TI  - On some nonlinear dynamical systems modelling asymmetric gene networks
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 19
EP  - 27
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_2_a1/
LA  - ru
ID  - VNGU_2007_7_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Gaydov
%A V. P. Golubyatnikov
%T On some nonlinear dynamical systems modelling asymmetric gene networks
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 19-27
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_2_a1/
%G ru
%F VNGU_2007_7_2_a1
Yu. A. Gaydov; V. P. Golubyatnikov. On some nonlinear dynamical systems modelling asymmetric gene networks. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 2, pp. 19-27. http://geodesic.mathdoc.fr/item/VNGU_2007_7_2_a1/

[1] Elowitz M. B., Leibler S., “A synthetic oscillatory network of transcription regulators”, Nature, 403 (2000), 335–338 | DOI

[2] Gardner T. S., Cantor C. R., Collins J. J., “Construction of a genetic toggle switch in Escherichia coli”, Nature, 403 (2000), 339–342 | DOI

[3] Golubyatnikov V. P., Likhoshvai V. A., Volokitin E. P. et al., “Periodic Trajectories and Andronov–Hopf Bifurcations in Models of Gene Networks”, Bioinformatics of Genome Regulation and Structure II, Springer Science+Business Media Inc., 2006, 405–414 | DOI

[4] Golubyatnikov V. P., Likhoshvai V. A., Gaidov Yu. A., Kleshchev A. G., Lashina E. A., “Regular and Chaotic Dynamics in the Gene Networks Modeling”, Human Computers-2005, Proc. International Conf. (University of Aizu, Japan), 7–12

[5] Hastings S., Tyson J., Webster D., “Existence of Periodic Solutions for Negative Feedback Cellular Control Systems”, J. of Diff. Equations, 25 (1977), 39–64 | DOI | MR | Zbl

[6] Volokitin E. P., Treskov S. A., “Bifurkatsiya Andronova–Khopfa v modeli gipoteticheskikh gennykh setei”, Sib. zhurn. industr. matematiki, 8 (2005), 30–40

[7] Kuznetsov Yu. A., Elements of Applied Bifurcation Theory, Springer-Verlag, N.Y., 1995 | MR | Zbl

[8] Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Zadachi teorii funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 6:2 (2003), 64–80 | MR

[9] Pliss V. A., Nelokalnye problemy teorii kolebanii, Nauka, M., 1964 | MR