Computable graphs of finite $\Delta_\alpha^0$-dimensions
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 1, pp. 102-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In present article, we prove the following assertions: For every computable successor ordinal $\alpha$, there exists a $\Delta_\alpha^0$-categorical directed graph (symmetric, irreflexive graph) which is not relatively $\Delta_\alpha^0$-categorical, i.e. no formally $\Sigma_\alpha^0$-Scott family exists for such a structure. For every computable successor ordinal $\alpha$, there exists an intrinsically $\Sigma_\alpha^0$-relation on universe of a computable directed graph (symmetric, irreflexive graph which is not a relatively intrinsically $\Sigma_\alpha^0$-relation. For every computable successor ordinal $\alpha$ and finite $n$, there exists a $\Delta_\alpha^0$-categorical directed graph (symmetric, irreflexive graph) whose $\Delta_\alpha^0$-dimension is equal to $n$. For every computable successor ordinal $\alpha$, there exists a directed graph (symmetric, irreflexive graph) possesing presentations only in the degrees of sets $X$ such that $\Delta_\alpha^0(X)\ne\Delta_\alpha^0$. In particular, for each finite $n$, there exist is a structure with presentations in just the non-low $n$ degrees.
@article{VNGU_2007_7_1_a7,
     author = {J. A. Tussupov},
     title = {Computable graphs of finite $\Delta_\alpha^0$-dimensions},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {102--113},
     year = {2007},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a7/}
}
TY  - JOUR
AU  - J. A. Tussupov
TI  - Computable graphs of finite $\Delta_\alpha^0$-dimensions
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 102
EP  - 113
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a7/
LA  - ru
ID  - VNGU_2007_7_1_a7
ER  - 
%0 Journal Article
%A J. A. Tussupov
%T Computable graphs of finite $\Delta_\alpha^0$-dimensions
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 102-113
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a7/
%G ru
%F VNGU_2007_7_1_a7
J. A. Tussupov. Computable graphs of finite $\Delta_\alpha^0$-dimensions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 1, pp. 102-113. http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a7/

[1] Goncharov S. S., Harizanov V. S., Knight J. F. et al., “Enumerations in computable structure theory”, Annals of Pure and Applied Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl

[2] Goncharov S. S., “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR | Zbl

[3] Goncharov S. S., Ershov Yu. L., Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999

[4] Ash C. J., Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, 2000 | Zbl

[5] Goncharov S. S., “The quantity of non-autoequivalent constructivizations”, Algebra and Logic, 16 (1977), 257–262 | DOI | MR

[6] Ash C. J., Knight J. F., “Pairs of computable structures”, Annals of Pure and Applied Logic, 46 (1990), 211–234 | DOI | MR | Zbl

[7] Ash C. J., Knight J. F., Mannasse M. et al., “Generic copies of countable structures”, Annals of Pure and Applied Logic, 42 (1989), 195–205 | DOI | MR | Zbl

[8] Ash C. J., Nerode A., “Intrinsically computable relations”, Aspects of Effective Algebra, ed. J. N. Crossley, Upside Down A Book Co., Steel's Creek, Australia, 26–41 | MR

[9] Chisholm J., “Effective model theory versus computable model theory”, J. Symb. Logic, 55 (1990), 1168–1191 | DOI | MR | Zbl

[10] Selivanov V. L., “Enumerations of families of general computable functions”, Algebra and Logic, 15 (1976), 205–226 | MR | Zbl

[11] Slaman T., “Relative to any non-computable set”, Proc. of the Amer. Math. Soc., 126 (1998), 2117–2122 | DOI | MR | Zbl

[12] Wehner S., “Enumerations, countable structures and Turing degrees”, Proc. of the Amer. Math. Soc., 126 (1998), 2131–2139 | DOI | MR | Zbl

[13] Mal'tsev A. I., Algorithms and Recursive Functions, Wolters-Noordhoff, Groningen, 1970 | MR