Left-invariant almost complex structures and the associated metrics on four-dimensional Lie groups
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 1, pp. 33-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work left-invariant almost complex structures and the left-invariant metrics corrisponding to these structures on four-dimensional Lie groups are researched. First, classification of orthogonal concerning the left-invariant metric almost complex structures is given, depending on a signature of the metric in a case of dimension 4. Then two new classes of almost complex structures which are called reduced and anti-reduced are introduced. These almost complex structures are completely determined by pair the set two-dimensional distributions of tangents subspaces. In a case of dimension 4 there is an aspect of these structures in the fixed base and is shown that each such structure holds some left-invariant exterior 2-form. With reduced almost complex structures left-invariant metrics is associated. These metrics are interesting to those that with their help on Lie groups it is possible to obtain left-invariant Einstein, Kahler and locally conformally Kahler metrics. In the work formulas which Nijenhuis tensor of left-invariant almost complex structure and basic geometrical characteristics of the associated metrics (such as a Ricci tensor, a scalar curvature and sectional curvature) with structural constants of a Lie algebra of the Lie group also are deduced express. The theorem of an integrability of reduced almost complex structure on a Lie group with the non-trivial center is proved. In the work detailed examples of reduced and antireduced almost complex structures and the associated metrics are represented, in a case when the Lie group is a direct product, and in a case when the Lie group is semi-direct product.
@article{VNGU_2007_7_1_a3,
     author = {E. S. Kornev},
     title = {Left-invariant almost complex structures and the associated metrics on four-dimensional {Lie} groups},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {33--54},
     year = {2007},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a3/}
}
TY  - JOUR
AU  - E. S. Kornev
TI  - Left-invariant almost complex structures and the associated metrics on four-dimensional Lie groups
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2007
SP  - 33
EP  - 54
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a3/
LA  - ru
ID  - VNGU_2007_7_1_a3
ER  - 
%0 Journal Article
%A E. S. Kornev
%T Left-invariant almost complex structures and the associated metrics on four-dimensional Lie groups
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2007
%P 33-54
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a3/
%G ru
%F VNGU_2007_7_1_a3
E. S. Kornev. Left-invariant almost complex structures and the associated metrics on four-dimensional Lie groups. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 7 (2007) no. 1, pp. 33-54. http://geodesic.mathdoc.fr/item/VNGU_2007_7_1_a3/

[1] Bourbaki N., Groupes et algèbres de Lie, Chap. I–III, v. XXVI, XXXVII, Hermann, Paris, 1971–1972

[2] Chu B.-Y., “Symplectic Homogeneous Spaces”, Trans. Amer. Math. Soc., 197 (1974), 145–159 | DOI | MR | Zbl

[3] Ghanam R., Thompson G., Miller E. J., “Variationality of Four-Dimensional Lie Group Connection”, J. of the Lie Theory, 14 (2004), 395–425 | MR | Zbl

[4] Jensen G. R., “Homogeneous Einstein spaces of dimension four”, J. Diff. Geom., 3 (1969), 309–349 | MR | Zbl

[5] Ishihara S., “Homogeneous Riemannian spaces of four dimensions”, J. Math. Soc. Japan, 7:4 (1955), 345–369 | DOI | MR

[6] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl

[7] Dragomir S., Ornea L., Locally Conformal Kahler Geometry, Progress in Math., 155, Birkhauser, Basel, 1998 | MR | Zbl

[8] Barberis M. L., “Hypercomplex structures on four-dimensional Lie groups”, Proc. Amer. Math. Soc., 125:4 (1997), 1043–1054 | DOI | MR | Zbl

[9] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya, 31 (2003), 69–146 | MR

[10] Smolentsev N. K., “Assotsiirovannye pochti kompleksnye struktury i (psevdo) rimanovy metriki na gruppakh $\mathrm{GL}(2,\mathbb{R})$ i $\mathrm{SL}(2,\mathbb{R})\times\mathbb{R}$”, Vestn. Kemerovskogo gos. un-ta, 24:4 (2005), 155–162

[11] Kornev E. S., “Ortogonalnye kompleksnye struktury na gruppakh $\mathrm{GL}(2,\mathbb{R})$ i $\mathrm{SL}(2,\mathbb{R})\times\mathbb{R}$”, Vestn. Kemerovskogo gos. un-ta, 24:4 (2005), 178–182

[12] Godushon P., “Poverkhnosti Khopfa — kvazikompleksnye mnogoobraziya razmernosti 4 (doklad VII)”, Chetyrekhmernaya rimanova geometriya: seminar Artura Besse 1978/79 g., Mir, M., 1985, 120–138

[13] Berar-Berzheri L., “Odnorodnye rimanovy prostranstva razmernosti 4 (doklad III)”, Chetyrekhmernaya rimanova geometriya: seminar Artura Besse 1978/79 g., Mir, M., 1985, 45–59 | MR

[14] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. VUZov. Matematika, 32:1 (1963), 114–123 | MR | Zbl

[15] Kornev E. S., “Levoinvariantnye pochti kompleksnye struktury i assotsiirovannye metriki na chetyrekhmernykh pryamykh proizvedeniyakh grupp Li”, Issledovano v Rossii, 2006 http://zhurnal.ape.relarn.ru/

[16] Kornev E. S., “Levoinvariantnye pochti kompleksnye struktury i assotsiirovannye metriki na chetyrekhmernykh nerazlozhimykh gruppakh Li”, Issledovano v Rossii, 2006 http://zhurnal.ape.relarn.ru/

[17] Kobayasi Sh., Namidzu K., Osnovy differentsialnoi geometrii, v 2 t., Nauka, M., 1981

[18] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964