@article{VNGU_2006_6_4_a6,
author = {T. \'Alvarez},
title = {SemiFredholm linear relations in operator rangles},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {98--105},
year = {2006},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a6/}
}
T. Álvarez. SemiFredholm linear relations in operator rangles. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 98-105. http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a6/
[1] Andrew A. D., Patterson W. M., “Range inclusion and factorization of operators on classical Banach spaces”, J. Math. Appl., 156 (1991), 40–43 | MR | Zbl
[2] Aubin J. P., Cellina A., Differential Inclusions, Springer-Verlag, N.Y., 1984 | MR | Zbl
[3] Clarke F. A., Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983 | MR | Zbl
[4] Coddington E. A., Multivalued operators and boundary value problems, Lecture Notes in Math., 183, Springer-Verlag, Berlin, 1997 | MR
[5] Coddington E. A., Dijksma A., “Selfadjoint subspaces and eigenfunction expansions for ordinary differential subspaces”, J. Differential Equations, 20:2 (1976), 473–526 | DOI | MR | Zbl
[6] Cross R. W., “On the continuous linear image of a Banach spaces”, J. Austral Math. Soc., A29 (1980), 219–234 | DOI | MR | Zbl
[7] Cross R. W., Ostrovskii M. I., Shevchik V. V., “Operator ranges in Banach spaces, I”, Math. Nach., 173 (1995), 91–114 | DOI | MR | Zbl
[8] Cross R. W., Multivalued Linear Operators, Marcel Dekker, N.Y., 1998 | MR | Zbl
[9] van Dulst D., “Perturbation theory and strictly singular operators in locally convex spaces”, Studia Math., 38 (1970), 341–372 | MR | Zbl
[10] Embry M. R., “Factorization of Operators on Banach spaces”, Proc. Amer. Math. Soc., 38 (1973), 587–590 | DOI | MR | Zbl
[11] Favini A., Yagi A., “Multivalued linear operators and degenerate evolution equations”, Ann. Mat. Pura Appl., 163:4 (1993), 353–384 | DOI | MR | Zbl
[12] Fonf V. P., “One Property of Families of Imbedding Banach Spaces”, J. Soviet Math., 59 (1992), 687–690 | DOI | MR
[13] Fonf V. P., Shevchik V. V., “Operators on dense embedding and quasicomplements of subspaces of Banach spaces”, Archiv Math., 62 (1994), 539–549 | DOI | MR
[14] Goldberg S., Unbounded Linear Operators, Mc-Graw-Hill, N.Y., 1966 | MR
[15] Gromov M., Partial Differential Relations, Springer-Verlag, Berlin, 1986 | MR | Zbl
[16] Kato T., “Perturbation theory for nullity, deficiency and other quantities of linear operators”, J. Anal. Math., 6 (1958), 273–322 | DOI | MR
[17] Labuschagne L. E., Unbounded linear operators in operator ranges, Ph. D. Thesis, Univ. Cape Town, 1988
[18] Labuschagne L. E., “The perturbation of relatively open operators with reduced index”, Math. Proc. Cambridge Phil. Soc., 112 (1992), 385–402 | DOI | MR | Zbl
[19] von Neumann J., Functional operators, v. 2, Ann. Math. Stud., 22, The geometry of orthogonal spaces, U. P., Princeton, 1950 | Zbl
[20] Pietsch A., “Homomorphismen in lokalkonvexen Vektorráumen”, Math. Nach., 22 (1960), 162–174 | DOI | MR | Zbl
[21] Plichko A. N., “Some Remarks on Operator Ranges”, Teor. Funktsii, Funktsional. Anal. i Prilozhen., 53 (1990), 69–70 | MR
[22] Shevchik V. V., “On subspace of a Banach space that coincide with the ranges of continuous linear operators”, Revues Roum. Math. Pures Appl., 31:1 (1986), 65–71 | MR | Zbl
[23] Wilcox D., Multivalued SemiFredholm operators in normed linear spaces, Ph. D. Thesis, Univ. Cape Town, 2001