SemiFredholm linear relations in operator rangles
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 98-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability of semiFredholm operators under strictly singular or small perturbation in Banach spaces were studied by several authors $[9, 14, 16, 18],\dots$. The main purpose of this paper is to study this problem for semiFredholm linear relations in operator ranges. We also give properties of adjoints of semiFredholm linear relations. Examples are exhibited proving that these results are not valid in arbitrary normed spaces.
@article{VNGU_2006_6_4_a6,
     author = {T. \'Alvarez},
     title = {SemiFredholm linear relations in operator rangles},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {98--105},
     year = {2006},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a6/}
}
TY  - JOUR
AU  - T. Álvarez
TI  - SemiFredholm linear relations in operator rangles
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 98
EP  - 105
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a6/
LA  - en
ID  - VNGU_2006_6_4_a6
ER  - 
%0 Journal Article
%A T. Álvarez
%T SemiFredholm linear relations in operator rangles
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 98-105
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a6/
%G en
%F VNGU_2006_6_4_a6
T. Álvarez. SemiFredholm linear relations in operator rangles. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 98-105. http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a6/

[1] Andrew A. D., Patterson W. M., “Range inclusion and factorization of operators on classical Banach spaces”, J. Math. Appl., 156 (1991), 40–43 | MR | Zbl

[2] Aubin J. P., Cellina A., Differential Inclusions, Springer-Verlag, N.Y., 1984 | MR | Zbl

[3] Clarke F. A., Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983 | MR | Zbl

[4] Coddington E. A., Multivalued operators and boundary value problems, Lecture Notes in Math., 183, Springer-Verlag, Berlin, 1997 | MR

[5] Coddington E. A., Dijksma A., “Selfadjoint subspaces and eigenfunction expansions for ordinary differential subspaces”, J. Differential Equations, 20:2 (1976), 473–526 | DOI | MR | Zbl

[6] Cross R. W., “On the continuous linear image of a Banach spaces”, J. Austral Math. Soc., A29 (1980), 219–234 | DOI | MR | Zbl

[7] Cross R. W., Ostrovskii M. I., Shevchik V. V., “Operator ranges in Banach spaces, I”, Math. Nach., 173 (1995), 91–114 | DOI | MR | Zbl

[8] Cross R. W., Multivalued Linear Operators, Marcel Dekker, N.Y., 1998 | MR | Zbl

[9] van Dulst D., “Perturbation theory and strictly singular operators in locally convex spaces”, Studia Math., 38 (1970), 341–372 | MR | Zbl

[10] Embry M. R., “Factorization of Operators on Banach spaces”, Proc. Amer. Math. Soc., 38 (1973), 587–590 | DOI | MR | Zbl

[11] Favini A., Yagi A., “Multivalued linear operators and degenerate evolution equations”, Ann. Mat. Pura Appl., 163:4 (1993), 353–384 | DOI | MR | Zbl

[12] Fonf V. P., “One Property of Families of Imbedding Banach Spaces”, J. Soviet Math., 59 (1992), 687–690 | DOI | MR

[13] Fonf V. P., Shevchik V. V., “Operators on dense embedding and quasicomplements of subspaces of Banach spaces”, Archiv Math., 62 (1994), 539–549 | DOI | MR

[14] Goldberg S., Unbounded Linear Operators, Mc-Graw-Hill, N.Y., 1966 | MR

[15] Gromov M., Partial Differential Relations, Springer-Verlag, Berlin, 1986 | MR | Zbl

[16] Kato T., “Perturbation theory for nullity, deficiency and other quantities of linear operators”, J. Anal. Math., 6 (1958), 273–322 | DOI | MR

[17] Labuschagne L. E., Unbounded linear operators in operator ranges, Ph. D. Thesis, Univ. Cape Town, 1988

[18] Labuschagne L. E., “The perturbation of relatively open operators with reduced index”, Math. Proc. Cambridge Phil. Soc., 112 (1992), 385–402 | DOI | MR | Zbl

[19] von Neumann J., Functional operators, v. 2, Ann. Math. Stud., 22, The geometry of orthogonal spaces, U. P., Princeton, 1950 | Zbl

[20] Pietsch A., “Homomorphismen in lokalkonvexen Vektorráumen”, Math. Nach., 22 (1960), 162–174 | DOI | MR | Zbl

[21] Plichko A. N., “Some Remarks on Operator Ranges”, Teor. Funktsii, Funktsional. Anal. i Prilozhen., 53 (1990), 69–70 | MR

[22] Shevchik V. V., “On subspace of a Banach space that coincide with the ranges of continuous linear operators”, Revues Roum. Math. Pures Appl., 31:1 (1986), 65–71 | MR | Zbl

[23] Wilcox D., Multivalued SemiFredholm operators in normed linear spaces, Ph. D. Thesis, Univ. Cape Town, 2001