Mathematical modeling of the three-dimensional electromagnetic fields in the frequency domain for magnetotelluric flexings
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 70-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a vector variational formulation for a second order equation for the field $\mathbf{E}$ and a mixed vector variational formulation for a sistem of the Maxwell equations in the frequency domain are constructed. A mixed vector and a vector finite element analogues of variational formulations are obtained for edge- and face- basis functions. A computational scheme for modeling of the three-dimensional harmonic electromagnetic fields in composite areas, where each of subregions has different physical characteristics, based on the vector and the mixed vector finite element method is constructed and studied Numerical modeling of the three-dimensional quasi-stationary electromagnetic fields on a class of magnetotelluric problems is performed.
@article{VNGU_2006_6_4_a3,
     author = {O. V. Nechaev and O. V. Nechaeva and E. P. Shurina and M. I. Epov},
     title = {Mathematical modeling of the three-dimensional electromagnetic fields in the frequency domain for magnetotelluric flexings},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {70--82},
     year = {2006},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a3/}
}
TY  - JOUR
AU  - O. V. Nechaev
AU  - O. V. Nechaeva
AU  - E. P. Shurina
AU  - M. I. Epov
TI  - Mathematical modeling of the three-dimensional electromagnetic fields in the frequency domain for magnetotelluric flexings
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 70
EP  - 82
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a3/
LA  - ru
ID  - VNGU_2006_6_4_a3
ER  - 
%0 Journal Article
%A O. V. Nechaev
%A O. V. Nechaeva
%A E. P. Shurina
%A M. I. Epov
%T Mathematical modeling of the three-dimensional electromagnetic fields in the frequency domain for magnetotelluric flexings
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 70-82
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a3/
%G ru
%F VNGU_2006_6_4_a3
O. V. Nechaev; O. V. Nechaeva; E. P. Shurina; M. I. Epov. Mathematical modeling of the three-dimensional electromagnetic fields in the frequency domain for magnetotelluric flexings. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 70-82. http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a3/

[1] Jin J., The Finite Element Method in Electromagnetics, John Wiley and Sons Inc., N.Y., 1993 | MR

[2] Silvester P. P., Ferrari R. L., Finite Elemens for Electrical Engineers, Cambridge University Press, Cambridge, 1990

[3] Winslow A. M., “Numerical solution of the guasilinear Poisson equation in a nonuniform triangle mesh”, J. Comp. Phis., 2 (1967), 149–172 | MR

[4] Brezzi F., Fortin M., Mixed and Hibrid finite element methods, Springer-Verlag Inc., N.Y., 1991 | MR | Zbl

[5] Toselli A., “Overlapping Schwartz methods for Maxwell's equations in three dimensions”, Numer. Math., 86:4 (2000) | DOI | MR | Zbl

[6] Assous F., Degond P., Heintze E., Raviart P. A., Serge J., “On a finite element method for solving the three-dimensional Maxwell equations”, J. Comput. Phis., 199 (1993), 222–237 | DOI | MR

[7] Makridakis G., Monk P., “Time-discrete finiteelement schemes for Maxwell's equations, RAIRO Model”, Math. Anal. Numer., 29 (1995), 171–197 | MR | Zbl

[8] Monk P., “A finite element method for approximating the time-harmonic Maxwell equations”, Numer. Math., 63 (1992), 243–261 | DOI | MR | Zbl

[9] Nedelec J. C., “Mixed Finite Elements in $R^3$”, Numer. Math., 35:3 (1980), 315–341 | DOI | MR | Zbl

[10] Nedelec J. C., “A New Family of Mixed Finite Elements in $R^3$”, Numer. Math., 50 (1986), 57–81 | DOI | MR | Zbl

[11] Hiptmair R., “Finite elements in computational electromagnetism”, Acta Numerica, 2002, 237–339 | MR | Zbl

[12] Webb J. P., “Hierarchal Vector Basis Functions of Arbitrary Order for Triangular and Tetrahedral Finite Elements”, IEEE Transactions on antennas and proragation, 47:8, august (1999) | MR | Zbl

[13] Ainsworth M., Coyle C., “Hierarchic finite element bases on unstructured tetrahedral meshes”, Int. J. Numer. Meth. Engng., 58 (2003), 2103–2130 | DOI | MR | Zbl

[14] Zhadov M. S., Varentov I. M., Weaver J. T., Golubev N. G., Krylov V. A., “Methods for modeling electromagnetic fields: Results from COMMEMI — The international project on the comparision of modeling methods for electromagnetic induction”, J. of Appl. Geophysics, 37 (1997), 133–271 | DOI

[15] Xueming et al., “Three dimensional magnetotelluric forward modeling using vector finite element method combined with divergence corrections (VFE++)”, IAGA WG 1.2 on Electromagnetic Induction in the Earth Proceedings of the 17th Workshop (Hyderabad, India, 2004), 18–23

[16] Mitsuhata Y., Uchida T., “3D magnetotelluric modeling using the T-finite-element method”, Geophysics, 69 (2004), 108–199 | DOI

[17] Khmelevskoi V. K., Elektrorazvedka, M., 1984

[18] Vanyan L. L., Elektromagnitnye zondirovaniya, M., 1997