Generalized Dirichlet problem for elliptic equation degenerating on unbounded manifolds
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 43-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we investigate the unique solvability of a generalized Dirichlet problem for higher order elliptic equation, degenerating on unbounded $C^0$ — manifolds of arbitrary dimension less then dimension of the space. Differential properties of the solution are studied depending on the smoothness of coefficients of the differential operator, the right-hand side of differential equation and boundary functions. The method applied in the paper is based on elements of the embedding theory weighted function spaces. Therefore in the paper first necessary imbedding theorems for the corresponding function spaces are established.
@article{VNGU_2006_6_4_a1,
     author = {S. A. Iskhokov and G. I. Tarasova},
     title = {Generalized {Dirichlet} problem for elliptic equation degenerating on unbounded manifolds},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {43--49},
     year = {2006},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a1/}
}
TY  - JOUR
AU  - S. A. Iskhokov
AU  - G. I. Tarasova
TI  - Generalized Dirichlet problem for elliptic equation degenerating on unbounded manifolds
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 43
EP  - 49
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a1/
LA  - ru
ID  - VNGU_2006_6_4_a1
ER  - 
%0 Journal Article
%A S. A. Iskhokov
%A G. I. Tarasova
%T Generalized Dirichlet problem for elliptic equation degenerating on unbounded manifolds
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 43-49
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a1/
%G ru
%F VNGU_2006_6_4_a1
S. A. Iskhokov; G. I. Tarasova. Generalized Dirichlet problem for elliptic equation degenerating on unbounded manifolds. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 4, pp. 43-49. http://geodesic.mathdoc.fr/item/VNGU_2006_6_4_a1/

[1] Kudryavtsev L. D., “Pryamye i obratnye teoremy vlozheniya. Prilozheniya k resheniyu variatsionnym metodom ellipticheskikh uravnenii”, Tr. Matem. in-ta AN SSSR, 55, 1959, 1–182 | Zbl

[2] Nikolskii S. M., Lizorkin P. I., Miroshin N. V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izvestiya VUZov. Matematika, 1988, no. 8, 4–30

[3] Boimatov K. Kh., Iskhokov S. A., “O razreshimosti i spektralnykh svoistvakh variatsionnoi zadachi Dirikhle, svyazannoi s nekoertsitivnoi bilineinoi formoi”, Tr. MIRAN im. V. A. Steklova, 214, 1997, 107–134 | Zbl

[4] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[5] Egorov I. E., Pyatkov S. G., Popov S. V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[6] Iskhokov S. A., “O gladkosti obobschennogo resheniya ellipticheskogo uravneniya s nestepennym vyrozhdeniem”, Dif. uravneniya, 39:11 (2003), 1536–1542 | MR | Zbl

[7] Rybalov Yu. V., “O kraevoi zadache v poluprostranstve s granichnymi usloviyami na beskonechnosti”, Dif. uravneniya, 15:12 (1979), 2193–2204 | MR | Zbl

[8] Matveeva I. I., “O variatsionnom metode resheniya vyrozhdayuschikhsya ellipticheskikh uravnenii v poluprostranstve”, Dif. uravneniya, 13:3 (1977), 489–496 | MR | Zbl

[9] Iskhokov S. A., “O gladkosti resheniya vyrozhdayuschikhsya differentsialnykh uravnenii”, Dif. uravneniya, 31:4 (1995), 641–653 | MR | Zbl

[10] Miroshin N. V., “Spektralnye vneshnie zadachi dlya vyrozhdayuschegosya ellipticheskogo operatora”, Izvestiya VUZov. Matematika, 1988, no. 8, 47–55

[11] Miroshin N. V., “Vneshnyaya variatsionnaya zadacha Dirikhle dlya ellipticheskogo operatora s vyrozhdeniem”, Tr. Matem. in-ta AN SSSR, 194, 1992, 179–195

[12] Iskhokov S. A., Sivtseva G. I., “Vneshnyaya variatsionnaya zadacha Dirikhle dlya ellipticheskogo operatora, vyrozhdayuschegosya na mnogoobraziyakh razlichnykh izmerenii”, Matem. zametki YaGU, 6:2 (1999), 28–41 | MR | Zbl

[13] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[14] Kufner A., Kheinig G. P., “Neravenstvo Khardi dlya proizvodnykh vysshikh poryadkov”, Tr. Matem. in-ta AN SSSR, 192, 1990, 105–113

[15] Lizorkin P. I., Nikolskii S. M., “Koertsitivnye svoistva ellipticheskogo uravneniya s vyrozhdeniem i obobschennoi pravoi chastyu”, Tr. Matem. in-ta AN SSSR, 161, 1983, 157–183 | MR | Zbl