On one generalization of the principle \emph{reductio ad absurdum}
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 3, pp. 62-87

Voir la notice de l'article provenant de la source Math-Net.Ru

On the base of comparing of the Curry logic of classical refutability and the Łukasiewicz modal logic we suggest a generalization of the notion of negation as reducibility to a unary absurdity operator, $\lnot \varphi:=\varphi\supset A(\varphi)$. We study the possibility to represent in this form the negation in such well known systems of paraconsistent logic as the logic of Batens $\mathbf{CLuN}$ and the maximal paraconsistent logic of Sette $P^1$.
@article{VNGU_2006_6_3_a5,
     author = {S. P. Odintsov},
     title = {On one generalization of the principle \emph{reductio ad absurdum}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {62--87},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_3_a5/}
}
TY  - JOUR
AU  - S. P. Odintsov
TI  - On one generalization of the principle \emph{reductio ad absurdum}
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 62
EP  - 87
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_3_a5/
LA  - ru
ID  - VNGU_2006_6_3_a5
ER  - 
%0 Journal Article
%A S. P. Odintsov
%T On one generalization of the principle \emph{reductio ad absurdum}
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 62-87
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_3_a5/
%G ru
%F VNGU_2006_6_3_a5
S. P. Odintsov. On one generalization of the principle \emph{reductio ad absurdum}. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 3, pp. 62-87. http://geodesic.mathdoc.fr/item/VNGU_2006_6_3_a5/