On one generalization of the principle \emph{reductio ad absurdum}
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 3, pp. 62-87
Voir la notice de l'article provenant de la source Math-Net.Ru
On the base of comparing of the Curry logic of classical refutability and the Łukasiewicz modal logic we suggest a generalization of the notion of negation as reducibility to a unary absurdity operator, $\lnot \varphi:=\varphi\supset A(\varphi)$. We study the possibility to represent in this form the negation in such well known systems of paraconsistent logic as the logic of Batens $\mathbf{CLuN}$ and the maximal paraconsistent logic of Sette $P^1$.
@article{VNGU_2006_6_3_a5,
author = {S. P. Odintsov},
title = {On one generalization of the principle \emph{reductio ad absurdum}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {62--87},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_3_a5/}
}
S. P. Odintsov. On one generalization of the principle \emph{reductio ad absurdum}. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 3, pp. 62-87. http://geodesic.mathdoc.fr/item/VNGU_2006_6_3_a5/