An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 103-113

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical model for three phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.
@article{VNGU_2006_6_2_a7,
     author = {V. V. Shelukhin},
     title = {An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/}
}
TY  - JOUR
AU  - V. V. Shelukhin
TI  - An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 103
EP  - 113
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/
LA  - ru
ID  - VNGU_2006_6_2_a7
ER  - 
%0 Journal Article
%A V. V. Shelukhin
%T An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 103-113
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/
%G ru
%F VNGU_2006_6_2_a7
V. V. Shelukhin. An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 103-113. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/