An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 103-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classical model for three phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.
@article{VNGU_2006_6_2_a7,
     author = {V. V. Shelukhin},
     title = {An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {103--113},
     year = {2006},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/}
}
TY  - JOUR
AU  - V. V. Shelukhin
TI  - An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 103
EP  - 113
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/
LA  - ru
ID  - VNGU_2006_6_2_a7
ER  - 
%0 Journal Article
%A V. V. Shelukhin
%T An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 103-113
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/
%G ru
%F VNGU_2006_6_2_a7
V. V. Shelukhin. An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 103-113. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/

[1] M. B. Allen, J. B. Behie, Multiphase flows in porous media: Mechanics, mathematics and numerics, Lecture Notes Eng-ing, 34, Springer-Verlag, New York, 1988 | DOI | MR | Zbl

[2] H. Amann, “Dynamic theory of quasi-linear parabolic systems. III: Global existence”, Math. Z., 202 (1989), 219–250 | DOI | MR | Zbl

[3] Z. Chen, R. E. Ewing, “Comparison of various formulations of three-phase flow in porous media”, Journal of Computational Physics, 132 (1997), 362–373 | DOI | MR | Zbl

[4] H. Frid, V. Shelukhin, “A quasilinear parabolic system for three-phase capillary flow in porous media”, SIAM J. Math. Anal., 35:4 (2003), 1029–1041 | DOI | MR | Zbl

[5] H. Frid, V. Shelukhin, “Initial boundary value problems for a quasilinear parabolic system in three-phase capillary flow in porous media”, SIAM J. Math. Anal., 36:5 (2005), 1407–1425 | DOI | MR | Zbl

[6] S. M. Hassanizadeh, W. G. Gray, “Theormodynamic basis of capillary pressure in porous media”, Water Resources Research, 29:10 (1993), 3389–3405 | DOI

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[8] V. N. Monakhov, M. I. Zhidkova, “Teoremy suschestvovaniya v nestatsionarnykh zadachakh khimicheski reagiruyuschikh potokov”, DAN, 70:2 (2004), 686–690

[9] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[10] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific Publishing Company, Amsterdam–Oxford–New York, 1977

[11] H. L. Stone, “Probability model for estimating three-phase relative permeability”, J. of Petroleum Technology, 1970, February, 214–218

[12] A. N. Varchenko, A. F. Zazovskii, “Trekhfaznaya filtratsiya nesmeshivayuschikhsya zhidkostei”, Itogi nauki i tekhniki. Ser. Kompleksnye i spetsialnye Razdely Mekhaniki, 4, VINITI, 1991, 98–154