An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 103-113
Voir la notice de l'article provenant de la source Math-Net.Ru
A classical model for three phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.
@article{VNGU_2006_6_2_a7,
author = {V. V. Shelukhin},
title = {An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {103--113},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/}
}
TY - JOUR AU - V. V. Shelukhin TI - An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2006 SP - 103 EP - 113 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/ LA - ru ID - VNGU_2006_6_2_a7 ER -
%0 Journal Article %A V. V. Shelukhin %T An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2006 %P 103-113 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/ %G ru %F VNGU_2006_6_2_a7
V. V. Shelukhin. An initial boundary-value problem for the equations of three-phase immiscible capillary flows in porous media. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 103-113. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a7/