Problem on a drift of a rigid body in a viscous fluid
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 88-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the investigation of the problem about the inertia-free motion of a rigid body in a viscous incompressible fluid whose flow is governed by the Stokes equations. The following result is proved: if initially the body does not touch the boundary of the flow domain, then the problem has a unique generalized solution up to the instant of the first collision of the body with the boundary. The uniqueness of the solution is the main outcome of the paper. Besides that, new results about operators and function spaces being related to the problem are obtained.
@article{VNGU_2006_6_2_a6,
     author = {V. N. Starovoitov},
     title = {Problem on a drift of a rigid body in a viscous fluid},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {88--102},
     year = {2006},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/}
}
TY  - JOUR
AU  - V. N. Starovoitov
TI  - Problem on a drift of a rigid body in a viscous fluid
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 88
EP  - 102
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/
LA  - ru
ID  - VNGU_2006_6_2_a6
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%T Problem on a drift of a rigid body in a viscous fluid
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 88-102
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/
%G ru
%F VNGU_2006_6_2_a6
V. N. Starovoitov. Problem on a drift of a rigid body in a viscous fluid. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 88-102. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/

[1] N. V. Yudakov, “Razreshimost zadachi o dvizhenii tverdogo tela v vyazkoi neszhimaemoi zhidkosti”, Dinamika sploshnoi sredy, 18, 1974, 249–253

[2] K.-H. Hoffmann, V. N. Starovoitov, On a motion of a solid body in a viscous fluid, Preprint M9617, Technische Universität München, 1996

[3] K.-H. Hoffmann, V. N. Starovoitov, “On a motion of a solid body in a viscous fluid. Two-dimensional case”, Adv. Math. Sci. Appl., 9:2 (1999), 633–648 | MR | Zbl

[4] B. Desjardins, M. J. Esteban, “Existence of weak solutions for the motion of rigid bodies in a viscous fluid”, Arch. Ration. Mech. Anal., 146:1 (1999), 59–71 | DOI | MR | Zbl

[5] K.-H. Hoffmann, V. N. Starovoitov, “Zur Bewegung einer Kugel in einer zähen Flüssigkeit”, Documenta Mathematica, 5 (2000), 15–21 | MR | Zbl

[6] V. N. Starovoitov, Neregulyarnye zadachi gidrodinamiki, Doktorskaya dissertatsiya, Novosibirskii gosudarstvennyi universitet, 2000

[7] C. Conca, J. A. San Martin, M. Tucsnak, “Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid”, Comm. Partial Differential Equations, 25:5–6 (2000), 1019–1042 | MR | Zbl

[8] M. D. Gunzburger, H.-C. Lee, G. Seregin, “Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions”, J. Math. Fluid Mech., 2:3 (2000), 219–266 | DOI | MR | Zbl

[9] J. A. San Martin, V. N. Starovoitov, M. Tucsnak, “Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid”, Arch. Ration. Mech. Anal., 161:2 (2002), 113–147 | DOI | MR | Zbl

[10] V. N. Starovoitov, “O needinstvennosti resheniya zadachi o dvizhenii tverdogo tela v vyazkoi neszhimaemoi zhidkosti”, Zapiski nauchnykh seminarov POMI, 306, 2003, 199–209

[11] E. Feireisl, “On the motion of rigid bodies in a viscous fluid”, Applications of Mathematics, 47:6 (2002), 463–484 | DOI | MR | Zbl

[12] V. N. Starovoitov, “Behavior of a rigid body in an incompressible viscous fluid near a boundary”, Free boundary problems, Internat. Ser. Numer. Math., 147, eds. P. Colli, C. Verdi, A. Visintin, Birkhäuser, Basel, 2003, 313–327 | MR | Zbl

[13] T. Takahashi, “Existence of strong solutions for the problem of a rigid-fluid system”, C. R. Acad. Sci. Paris, Ser. I, 336:5 (2003), 453–458 | DOI | MR | Zbl

[14] R. Temam, Problèmes mathématiques en plasticité, Publié avec le concours du C.N.R.S., Méthodes Mathématiques de l'Informatique, 12, Gauthier-Villars, Bordas, VII, Paris, 1983 | MR | Zbl

[15] P.-L. Lions, Mathematical Topics in Fluid Mechanics, v. 1, Incompressible models, Clarendon Press, Oxford, 1996 | MR | Zbl

[16] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR