Problem on a drift of a rigid body in a viscous fluid
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 88-102

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the investigation of the problem about the inertia-free motion of a rigid body in a viscous incompressible fluid whose flow is governed by the Stokes equations. The following result is proved: if initially the body does not touch the boundary of the flow domain, then the problem has a unique generalized solution up to the instant of the first collision of the body with the boundary. The uniqueness of the solution is the main outcome of the paper. Besides that, new results about operators and function spaces being related to the problem are obtained.
@article{VNGU_2006_6_2_a6,
     author = {V. N. Starovoitov},
     title = {Problem on a drift of a rigid body in a viscous fluid},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {88--102},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/}
}
TY  - JOUR
AU  - V. N. Starovoitov
TI  - Problem on a drift of a rigid body in a viscous fluid
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 88
EP  - 102
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/
LA  - ru
ID  - VNGU_2006_6_2_a6
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%T Problem on a drift of a rigid body in a viscous fluid
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 88-102
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/
%G ru
%F VNGU_2006_6_2_a6
V. N. Starovoitov. Problem on a drift of a rigid body in a viscous fluid. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 88-102. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a6/