A choice of an optimal form of surface cracks in 3D solids
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 76-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 3D-elastic body with a surface crack satisfying a nonpenetration conditions (Signorini-type conditions). In the paper, we investigate two optimization problems. The first problem is to find the crack shape which gives the minimum deviation of the energy functional derivative from a given critical value. The second one is to investigate a solvability of an optimization problem of a crack path with a cost functional depending on the derivative of the energy functional and a crack surface area.
@article{VNGU_2006_6_2_a5,
     author = {E. M. Rudoy},
     title = {A choice of an optimal form of surface cracks in {3D} solids},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a5/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - A choice of an optimal form of surface cracks in 3D solids
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 76
EP  - 87
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a5/
LA  - ru
ID  - VNGU_2006_6_2_a5
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T A choice of an optimal form of surface cracks in 3D solids
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 76-87
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a5/
%G ru
%F VNGU_2006_6_2_a5
E. M. Rudoy. A choice of an optimal form of surface cracks in 3D solids. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 76-87. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a5/