A choice of an optimal form of surface cracks in 3D solids
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 76-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider 3D-elastic body with a surface crack satisfying a nonpenetration conditions (Signorini-type conditions). In the paper, we investigate two optimization problems. The first problem is to find the crack shape which gives the minimum deviation of the energy functional derivative from a given critical value. The second one is to investigate a solvability of an optimization problem of a crack path with a cost functional depending on the derivative of the energy functional and a crack surface area.
@article{VNGU_2006_6_2_a5,
author = {E. M. Rudoy},
title = {A choice of an optimal form of surface cracks in {3D} solids},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {76--87},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a5/}
}
E. M. Rudoy. A choice of an optimal form of surface cracks in 3D solids. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 76-87. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a5/