@article{VNGU_2006_6_2_a4,
author = {P. I. Plotnikov},
title = {Analytical extension of a solution to {Mac-Leod} equation},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {67--75},
year = {2006},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a4/}
}
P. I. Plotnikov. Analytical extension of a solution to Mac-Leod equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 67-75. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a4/
[1] C. J. Amick, “Bounds for water waves”, Arch. for Rat. Mech. Anal., 99 (1987), 91–114 | DOI | MR | Zbl
[2] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M.–L., 1950
[3] Yu. P. Krasovskii, “O teorii ustanovivshikhsya voln konechnoi amplitudy”, Zhurn. vychisl. matematiki i mat. fiziki, 1 (1962), 996–1018
[4] J. B. McLeod, “The Stokes and Krasovskii conjectures for the wave of greatest height”, Studies in Applied Math., 98 (1997), 311–334 | DOI | MR
[5] A. I. Nekrasov, “Tochnaya teoriya voln ustanovivshegosya vida na poverkhnosti tyazheloi zhidkosti”, Sobr. soch., v. 1, Fizmatgiz, 1921, 358–439
[6] P. I. Plotnikov, J. F. Toland, “Convexity of Stokes Waves”, Arch. for Rat. Mech. Anal., 171 (2004), 349–416 | DOI | MR | Zbl
[7] G. G. Stokes, “Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form”, Mathematical and Physical Papers, v. I, Cambridge, 1880, 225–228