Analytical extension of a solution to Mac-Leod equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 67-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that solutions to the Mac-leod equation arising in the theory of the Stokes waves have analytical equation to the complex plane with a cut along the positive imaginary semi-axis.
@article{VNGU_2006_6_2_a4,
     author = {P. I. Plotnikov},
     title = {Analytical extension of a solution to {Mac-Leod} equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {67--75},
     year = {2006},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a4/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Analytical extension of a solution to Mac-Leod equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 67
EP  - 75
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a4/
LA  - ru
ID  - VNGU_2006_6_2_a4
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Analytical extension of a solution to Mac-Leod equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 67-75
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a4/
%G ru
%F VNGU_2006_6_2_a4
P. I. Plotnikov. Analytical extension of a solution to Mac-Leod equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 67-75. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a4/

[1] C. J. Amick, “Bounds for water waves”, Arch. for Rat. Mech. Anal., 99 (1987), 91–114 | DOI | MR | Zbl

[2] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M.–L., 1950

[3] Yu. P. Krasovskii, “O teorii ustanovivshikhsya voln konechnoi amplitudy”, Zhurn. vychisl. matematiki i mat. fiziki, 1 (1962), 996–1018

[4] J. B. McLeod, “The Stokes and Krasovskii conjectures for the wave of greatest height”, Studies in Applied Math., 98 (1997), 311–334 | DOI | MR

[5] A. I. Nekrasov, “Tochnaya teoriya voln ustanovivshegosya vida na poverkhnosti tyazheloi zhidkosti”, Sobr. soch., v. 1, Fizmatgiz, 1921, 358–439

[6] P. I. Plotnikov, J. F. Toland, “Convexity of Stokes Waves”, Arch. for Rat. Mech. Anal., 171 (2004), 349–416 | DOI | MR | Zbl

[7] G. G. Stokes, “Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form”, Mathematical and Physical Papers, v. I, Cambridge, 1880, 225–228