Stationary problems for two-phase nonisothermal flows in porous media
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 57-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the existence theorems for stationary boundary-value problems of thermal two-phase filtration in the classes of generalized and classic solutions (the Masket–Lerevett model). Solutions are constructed by an iteration method. It is proved that the approximate solutions converge and an estimation of the convergence rate is performed.
@article{VNGU_2006_6_2_a3,
     author = {V. N. Monakhov},
     title = {Stationary problems for two-phase nonisothermal flows in porous media},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a3/}
}
TY  - JOUR
AU  - V. N. Monakhov
TI  - Stationary problems for two-phase nonisothermal flows in porous media
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 57
EP  - 66
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a3/
LA  - ru
ID  - VNGU_2006_6_2_a3
ER  - 
%0 Journal Article
%A V. N. Monakhov
%T Stationary problems for two-phase nonisothermal flows in porous media
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 57-66
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a3/
%G ru
%F VNGU_2006_6_2_a3
V. N. Monakhov. Stationary problems for two-phase nonisothermal flows in porous media. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 57-66. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a3/