The scales of spaces $L_p$ and their connection with Orlicz spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 33-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the classes of measurable functions which are estimated in the spaces $L_p$ with the norm $\omega(p)$ for all $p\in(\alpha,\beta)$. It is well-known for some simple functions $\omega$ and $\beta=+\infty$ that such classes are embedded into the appropriate Orlicz spaces. In this article we study the connection between these classes and other symmetric (Lorentz, Marcinkiewicz and Orlicz) spaces for arbitrary $\omega$, $\alpha$ and $\beta$. Our main goal is to show two-sided embedding or coincidence with Orlicz spaces.
@article{VNGU_2006_6_2_a2,
     author = {A. E. Mamontov},
     title = {The scales of spaces $L_p$ and their connection with {Orlicz} spaces},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {33--56},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/}
}
TY  - JOUR
AU  - A. E. Mamontov
TI  - The scales of spaces $L_p$ and their connection with Orlicz spaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 33
EP  - 56
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/
LA  - ru
ID  - VNGU_2006_6_2_a2
ER  - 
%0 Journal Article
%A A. E. Mamontov
%T The scales of spaces $L_p$ and their connection with Orlicz spaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 33-56
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/
%G ru
%F VNGU_2006_6_2_a2
A. E. Mamontov. The scales of spaces $L_p$ and their connection with Orlicz spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 33-56. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/