The scales of spaces $L_p$ and their connection with Orlicz spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 33-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the classes of measurable functions which are estimated in the spaces $L_p$ with the norm $\omega(p)$ for all $p\in(\alpha,\beta)$. It is well-known for some simple functions $\omega$ and $\beta=+\infty$ that such classes are embedded into the appropriate Orlicz spaces. In this article we study the connection between these classes and other symmetric (Lorentz, Marcinkiewicz and Orlicz) spaces for arbitrary $\omega$, $\alpha$ and $\beta$. Our main goal is to show two-sided embedding or coincidence with Orlicz spaces.
@article{VNGU_2006_6_2_a2,
     author = {A. E. Mamontov},
     title = {The scales of spaces $L_p$ and their connection with {Orlicz} spaces},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {33--56},
     year = {2006},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/}
}
TY  - JOUR
AU  - A. E. Mamontov
TI  - The scales of spaces $L_p$ and their connection with Orlicz spaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 33
EP  - 56
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/
LA  - ru
ID  - VNGU_2006_6_2_a2
ER  - 
%0 Journal Article
%A A. E. Mamontov
%T The scales of spaces $L_p$ and their connection with Orlicz spaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 33-56
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/
%G ru
%F VNGU_2006_6_2_a2
A. E. Mamontov. The scales of spaces $L_p$ and their connection with Orlicz spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 33-56. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/

[1] V. A. Vaigant, A. V. Kazhikhov, “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave–Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. mat. zhurnal, 36:6 (1995), 1283–1316 | MR | Zbl

[2] A. V. Kazhikhov, V. V. Shelukhin, “The verification compactness method”, Aktualnye problemy sovremennoi matematiki, v. 2, Novosib. gos. universitet, Novosibirsk, 1996, 51–60 | Zbl

[3] V. I. Yudovich, “Dvumernaya nestatsionarnaya zadacha o protekanii idealnoi neszhimaemoi zhidkosti skvoz zadannuyu oblast”, Mat. Sb., 64(106):4 (1964), 562–588 | MR

[4] V. I. Yudovich, “Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid”, Mathematical Research Letters, 2 (1995), 27–38 | DOI | MR | Zbl

[5] V. I. Yudovich, “O nekotorykh otsenkakh, svyazannykh s integralnymi operatorami i resheniyami ellipticheskikh uravnenii”, DAN SSSR, 138:4 (1961), 805–808 | MR | Zbl

[6] S. I. Pokhozhaev, “O teoreme vlozheniya S. L. Soboleva v sluchae $lp=n$”, Dokl. nauch.- tekhn. konf., MEI, M., 1965, 158–170

[7] I. B. Simonenko, “Interpolyatsiya i ekstrapolyatsiya lineinykh operatorov v prostranstvakh Orlicha”, Mat. Sb., 63(105):4 (1964), 536–553 | MR | Zbl

[8] A. E. Mamontov, “Ekstrapolyatsiya lineinykh operatorov iz $L_p$ v prostranstva Orlicha, porozhdennye bystro ili medlenno rastuschimi N-funktsiyami”, Aktualnye problemy sovremennoi matematiki, v. 2, Novosib. gos. universitet, Novosibirsk, 1996, 95–103

[9] A. E. Mamontov, “Integralnye predstavleniya i preobrazovaniya N-funktsii, I”, Sib. mat. zhurnal, 47:1 (2006), 123–145 | MR | Zbl

[10] A. E. Mamontov, “Integralnye predstavleniya i preobrazovaniya N-funktsii, II”, Sib. mat. zhurnal, 47:4 (2006), 811–830 | MR | Zbl

[11] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Gos. izd. fiz.-mat. lit., M., 1958 | MR

[12] S. G. Krein, Yu. S. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR