The scales of spaces $L_p$ and their connection with Orlicz spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 33-56
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the classes of measurable functions which are estimated in the spaces $L_p$ with the norm $\omega(p)$ for all $p\in(\alpha,\beta)$. It is well-known for some simple functions $\omega$ and $\beta=+\infty$ that such classes are embedded into the appropriate Orlicz spaces. In this article we study the connection between these classes and other symmetric (Lorentz, Marcinkiewicz and Orlicz) spaces for arbitrary $\omega$, $\alpha$ and $\beta$. Our main goal is to show two-sided embedding or coincidence with Orlicz spaces.
@article{VNGU_2006_6_2_a2,
author = {A. E. Mamontov},
title = {The scales of spaces $L_p$ and their connection with {Orlicz} spaces},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {33--56},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/}
}
A. E. Mamontov. The scales of spaces $L_p$ and their connection with Orlicz spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 2, pp. 33-56. http://geodesic.mathdoc.fr/item/VNGU_2006_6_2_a2/