The automorphism groups of relatively free groups of infinite rank
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 77-101
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey article that presents some recent algebraic and model-theoretic results on the automorphism groups of relatively free groups of infinite rank. The topics include topological aspects, generating sets, descripition of automorpisms and expressive power of the first-order theories.
@article{VNGU_2006_6_1_a5,
     author = {V. A. Tolstykh},
     title = {The automorphism groups of relatively free groups of infinite rank},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {77--101},
     year = {2006},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a5/}
}
TY  - JOUR
AU  - V. A. Tolstykh
TI  - The automorphism groups of relatively free groups of infinite rank
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 77
EP  - 101
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a5/
LA  - ru
ID  - VNGU_2006_6_1_a5
ER  - 
%0 Journal Article
%A V. A. Tolstykh
%T The automorphism groups of relatively free groups of infinite rank
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 77-101
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a5/
%G ru
%F VNGU_2006_6_1_a5
V. A. Tolstykh. The automorphism groups of relatively free groups of infinite rank. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 77-101. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a5/

[1] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[2] Kourovskaya tetrad: nereshennye problemy teorii grupp, 15-e izd., Novosibirsk, 2003

[3] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[4] V. A. Tolstykh, Teorii beskonechnomernykh lineinykh grupp, Diss. kand. fiz.-mat nauk, Kemerovo, 1992

[5] D. G. Khramtsov, “Konechnye gruppy avtomorfizmov svobodnykh grupp”, Matem. zametki, 38:3 (1985), 386–392 | MR | Zbl

[6] D. G. Khramtsov, “Vneshnie avtomorfizmy svobodnykh grupp”, Teoretiko-gruppovye issledovaniya, Uralskoe otd. AN SSSR, Sverdlovsk, 1990, 95–127

[7] D. G. Khramtsov, “Sovershennost gruppy vneshnikh avtomorfizmov svobodnoi gruppy”, Teoretiko-gruppovye issledovaniya, Uralskoe otd. AN SSSR, Sverdlovsk, 1990, 128–143 | Zbl

[8] I. V. Chirkov, “Svoistvo malogo indeksa dlya algebr”, Sib. mat. zhurn., 41:4 (2000), 929–934 | MR | Zbl

[9] G. Bergman, Generating infinite symmetric groups, 2004, arXiv: math.GR/0401304 | MR

[10] G. Bergman, “Generating infinite symmetric groups”, Bull. London Math. Soc. (to appear) | MR

[11] G. Bergman, S. Shelah, Closed subgroups of the infinite symmetric group, 2004, arXiv: math.GR/0401305 | MR

[12] R. M. Bryant, D. M. Evans, “The small index property for free groups and relatively free groups”, J. London Math. Soc., 55 (1997), 363–369 | DOI | MR | Zbl

[13] M. Bridson, K. Vogtmann, “Homomorphisms from automorphism groups of free groups”, Bull. London Math. Soc., 35 (2003), 785–792 | DOI | MR | Zbl

[14] M. Bridson, K. Vogtmann, “Automorphisms of automorphism groups of free groups”, J. Algebra, 229 (2000), 785–792 | DOI | MR | Zbl

[15] R. M. Bryant, O. Macedonska, “Automorphisms of relatively free nilpotent groups of infinite rank”, J. Algebra, 121 (1989), 388–398 | DOI | MR

[16] R. M. Bryant, V. A. Roman'kov, “The automorphism groups of relatively free algebras”, J. Algebra, 209 (1998), 713–723 | DOI | MR | Zbl

[17] J. Baldwin, S. Shelah, “Second order quantifiers and the complexity of theories”, Notre-Dame J. Formal Logic, 26 (1985), 229–302 | DOI | MR

[18] V. Bardakov, V. Shpilrain, V. Tolstykh, “On the palindromic and primitive widths of a free group”, J. Algebra, 285 (2005), 574–585 | DOI | MR | Zbl

[19] G. Baumslag, A. Myasnikov, V. Shpilrain, “Open problems in combinatorial group theory”, Combinatorial and geometric group theory, Contemp. Math., 296, Second edition, 2002, 1–38 | DOI | MR | Zbl

[20] R. G. Burns, L. Pi, “Generators for the bounded automorphisms of infinite-rank free nilpotent groups”, Bull. Austral. Math. Soc., 40 (1989), 175–187 | DOI | MR | Zbl

[21] M. Culler, K. Vogtmann, “Moduli of graphs and automorphisms of free groups”, Invent. Math., 84 (1986), 91–119 | DOI | MR | Zbl

[22] J. Dixon, P. M. Neumann, S. Thomas, “Subgroups of small index in infinite symmetric groups”, Bull. London Math. Soc., 18 (1986), 580–586 | DOI | MR | Zbl

[23] M. Droste, R. Göbel, “Uncountable cofinalities of permutation groups”, J. London Math. Soc., 71 (2005), 335–344 | DOI | MR | Zbl

[24] M. Droste, W. C. Holland, “Generating automorphism groups of chains”, Forum Math., 17 (2005), 699–710 | DOI | MR | Zbl

[25] J. Dyer, G. P. Scott, “Periodic automorphisms of free groups”, Comm. Algebra, 3 (1975), 195–201 | DOI | MR | Zbl

[26] J. Dyer, “Automorphism sequences of integer unimodular groups”, Illinois J. Math., 22 (1978), 1–30 | MR | Zbl

[27] J. Dyer, E. Formanek, “The automorphism group of a free group is complete”, J. London Math. Soc., 11 (1975), 181–190 | DOI | MR | Zbl

[28] J. Dyer, E. Formanek, “Automorphism sequences of free nilpotent group of class two”, Math. Proc. Camb. Phil. Soc., 79 (1976), 271–279 | DOI | MR | Zbl

[29] J. Dyer, E. Formanek, “Complete automorphism groups”, Bull. Amer. Math. Soc., 81 (1975), 435–437 | DOI | MR | Zbl

[30] J. Dyer, E. Formanek, “Characteristic subgroups and complete automorphism groups”, Amer. J. Math., 99 (1977), 713–753 | DOI | MR | Zbl

[31] D. Evans, “Subgroups of small index in infinite general linear groups”, Bull. London Math. Soc., 18 (1986), 587–590 | DOI | MR | Zbl

[32] E. Formanek, “Fixed points and centers of automorphism groups of free nilpotent groups”, Comm. Algebra, 30 (2002), 1033–1038 | DOI | MR | Zbl

[33] E. Formanek, “Characterizing a free group in its automorphism group”, J. Algebra, 133 (1990), 424–432 | DOI | MR | Zbl

[34] W. Hodges, Model Theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[35] W. Hodges, I. Hodkinson, D. Lascar, S. Shelah, “The small index property for $\omega$-stable $\omega$-categorical structures and for the random graph”, J. London Math. Soc., 48 (1993), 204–218 | DOI | MR | Zbl

[36] L. K. Hua, I. Reiner, “Automorphisms of the unimodular group”, Trans. Amer. Math. Soc., 71 (1951), 331–348 | DOI | MR | Zbl

[37] M. Kassabov, On the automorphism tower of free nilpotent groups, Ph. D. Thesis, Yale Univ., 2003 | MR

[38] A. S. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1995 | MR | Zbl

[39] A. S. Kechris, C. Rosendal, Turbulence, amalgamation and generic automorphisms of homogeneous structures, 2004, arXiv: math.LO/0409567 | MR

[40] H. D. Macpherson, “Maximal subgroups of infinite-dimensional linear groups”, J. Austral. Math. Soc. (Series A), 53 (1992), 338–351 | DOI | MR | Zbl

[41] H. D. Macpherson, P. M. Neumann, “Subgroups of infinite symmetric groups”, J. London Math. Soc., 42 (1990), 64–84 | DOI | MR | Zbl

[42] A. Rosenberg, “The structure of the infinite general linear group”, Ann. of Math., 68 (1958), 278–294 | DOI | MR | Zbl

[43] J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980 | MR | Zbl

[44] S. Shelah, “First order theory of permutation groups”, Israel. J. Math., 14 (1973), 149–162 | DOI | MR | Zbl

[45] S. Shelah, “Errata to: First order theory of permutation groups”, Israel J. Math., 15 (1973), 437–441 | DOI | MR | Zbl

[46] S. Shelah, “Interpreting set theory in the endomorphism semi-group of a free algebra or in a category”, Annales Scientifiques de L'universite de Clermont, 13 (1976), 1–29 | MR | Zbl

[47] S. Shelah, “On a problem of Kurosh, Jonsson groups, and applications”, Word problems II, Stud. Logic Foundations Math., 95, North-Holland, Amsterdam–New York, 1980, 373–394 | DOI | MR

[48] S. Shelah, “On what I do not understand (and have something to say), model theory”, Math. Japon., 51 (2000), 329–377 | MR | Zbl

[49] V. Tolstykh, “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure Appl. Logic, 105 (2000), 103–156 | DOI | MR | Zbl

[50] V. Tolstykh, “The automorphism tower of a free group”, J. London Math. Soc., 61 (2000), 423–440 | DOI | MR | Zbl

[51] V. Tolstykh, “Set theory is interpretable in the automorphism group of an infinitely generated free group”, J. London Math. Soc., 62 (2000), 16–26 | DOI | MR | Zbl

[52] V. Tolstykh, “Free two-step nilpotent groups whose automorphism group is complete”, Math. Proc. Cambridge Philos. Soc., 131 (2001), 73–90 | DOI | MR | Zbl

[53] V. Tolstykh, “On the logical strength of the automorphism groups of free nilpotent groups”, Contemp. Math., 302 (2002), 113–120 | DOI | MR | Zbl

[54] V. Tolstykh, Infinite-dimensional general linear groups are groups of universally finite width, 2004, arXiv: math.GR/0403223 | MR

[55] V. Tolstykh, What does the automorphism group of a free abelian group $A$ know about $A$?, Contemp. Math., 380, 2005, 283–296 | DOI | MR | Zbl

[56] V. Tolstykh, “On the Bergman property for the automorphism groups of free group”, J. Lond. Math. Soc. (to appear)