Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 43-59
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solvability is studied of the inverse problems of finding a solution $u(x,t)$ and the coefficients $q(t)$ of the equations \begin{align*} u_{tt}-u_{xx}+q(t)a(x,t)u_t=(x,t),\\ u_{tt}-u_{xx}+q(t)a(x,t)u=(x,t) \end{align*} In this case the overdetermination condition has the integral form $$ \int_0^1K(x,t)u(x,t)dx=\mu(t). $$ Unique existence of regular solutions is established.
@article{VNGU_2006_6_1_a2,
     author = {I. R. Valitov and A. I. Kozhanov},
     title = {Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {43--59},
     year = {2006},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/}
}
TY  - JOUR
AU  - I. R. Valitov
AU  - A. I. Kozhanov
TI  - Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 43
EP  - 59
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/
LA  - ru
ID  - VNGU_2006_6_1_a2
ER  - 
%0 Journal Article
%A I. R. Valitov
%A A. I. Kozhanov
%T Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 43-59
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/
%G ru
%F VNGU_2006_6_1_a2
I. R. Valitov; A. I. Kozhanov. Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/

[1] V. G. Romanov, Nekotorye obratnye zadachi dlya uravnenii giperbolicheskogo tipa, Nauka, Novosibirsk, 1972

[2] J. R. Cannon, P. DuChateau, “An inverse problem for an unknown sourse term in a wave equation”, SIAM J. of App. Math., 43:3 (1983), 553–564 | DOI | MR | Zbl

[3] Yu. E. Anikonov, “Formuly v obratnykh zadachakh dlya uravnenii 2-go poryadka”, DAN SSSR, 320:4 (1991), 848–850 | Zbl

[4] E. G. Savateev, “An inverse problem for the Burger's equation and its hyperbolic regularization”, J. of Inverse and Inverse and Ill-Posed Problems, 1:3 (1993), 231–244 | MR

[5] E. G. Savateev, “Well-posedness and reduction of an inverse problem for a hyperbolic equation”, J. of Inverse and Ill-Posed Problems, 2:2 (1994), 165–180 | DOI | MR | Zbl

[6] A. M. Denisov, “Determination of a nonlinear coefficient in a hyperbolic equation for the Coursat problem”, J. of Inverse and Ill-Posed Problems, 6:4 (1998), 327–334 | DOI | MR | Zbl

[7] A. Yu. Scheglov, “The inverse problem of determination of a nonlinear course in a hyperbolic equation”, J. of Inverse and Ill-Posed Problems, 6:6 (1998), 625–644 | MR

[8] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005

[9] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1985

[10] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[11] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[12] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[13] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR