Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 43-59
Voir la notice de l'article provenant de la source Math-Net.Ru
Solvability is studied of the inverse problems of finding a solution $u(x,t)$ and the coefficients $q(t)$ of the equations
\begin{align*}
u_{tt}-u_{xx}+q(t)a(x,t)u_t=(x,t),\\
u_{tt}-u_{xx}+q(t)a(x,t)u=(x,t)
\end{align*}
In this case the overdetermination condition has the integral form
$$
\int_0^1K(x,t)u(x,t)dx=\mu(t).
$$
Unique existence of regular solutions is established.
@article{VNGU_2006_6_1_a2,
author = {I. R. Valitov and A. I. Kozhanov},
title = {Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {43--59},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/}
}
TY - JOUR AU - I. R. Valitov AU - A. I. Kozhanov TI - Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2006 SP - 43 EP - 59 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/ LA - ru ID - VNGU_2006_6_1_a2 ER -
%0 Journal Article %A I. R. Valitov %A A. I. Kozhanov %T Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2006 %P 43-59 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/ %G ru %F VNGU_2006_6_1_a2
I. R. Valitov; A. I. Kozhanov. Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/