Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 43-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability is studied of the inverse problems of finding a solution $u(x,t)$ and the coefficients $q(t)$ of the equations \begin{align*} u_{tt}-u_{xx}+q(t)a(x,t)u_t=(x,t),\\ u_{tt}-u_{xx}+q(t)a(x,t)u=(x,t) \end{align*} In this case the overdetermination condition has the integral form $$ \int_0^1K(x,t)u(x,t)dx=\mu(t). $$ Unique existence of regular solutions is established.
@article{VNGU_2006_6_1_a2,
     author = {I. R. Valitov and A. I. Kozhanov},
     title = {Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {43--59},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/}
}
TY  - JOUR
AU  - I. R. Valitov
AU  - A. I. Kozhanov
TI  - Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 43
EP  - 59
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/
LA  - ru
ID  - VNGU_2006_6_1_a2
ER  - 
%0 Journal Article
%A I. R. Valitov
%A A. I. Kozhanov
%T Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 43-59
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/
%G ru
%F VNGU_2006_6_1_a2
I. R. Valitov; A. I. Kozhanov. Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a2/