@article{VNGU_2005_5_4_a4,
author = {S. B. Medvedev},
title = {Asymptotical normal form of {Poisson} bracket for one-dimensional fluid},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {60--69},
year = {2005},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a4/}
}
S. B. Medvedev. Asymptotical normal form of Poisson bracket for one-dimensional fluid. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 60-69. http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a4/
[1] V. A. Vladimirov, “Analogiya effektov stratifikatsii i vrascheniya”, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, N., 1985
[2] S. B. Medvedev, “Teorema Darbu dlya polevykh gamiltonovykh sistem”, Vestnik NGU, Seriya: matem., mekhanika, inform., 4:1 (2004), 50–64
[3] E. Balkovsky, “Some notes on the Clebsch representation for incompressible fluids”, Phys. Lett. A, 186 (1994), 135–136 | DOI | MR | Zbl
[4] I. Bialynicki-Birula, P. J. Morrison, “Quantum mechanics as a generalization of Nambu dynamics to the Weyl–Wigner formalism”, Phys. Lett. A, 158 (1991), 453–437 | DOI | MR
[5] H.-R. Cho, T. G. Shepherd, V. A. Vladimirov, “Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere”, J. Atmos. Sci., 50 (1993), 822–836 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[6] E. A. Kuznetsov, A. V. Mikhailov, “On the topological meaning of canonical Clebsch variables”, Phys. Lett. A, 77 (1980), 37–38 | DOI | MR
[7] T. G. Shepherd, “Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics”, Adv. Geophys., 32 (1990), 287–338 | DOI
[8] T. G. Shepherd, “A unified theory of available potential energy”, Atmos.-Ocean, 31 (1993), 1–26 | DOI
[9] A. Weinstein, “The local structure of Poisson manifold”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl
[10] V. Yakhot, V. Zakharov, “Hidden conservation laws in hydrodynamics; energy and dissipation rate fluctuation spectra in strong turbulence”, Physica D, 64 (1993), 379–394 | DOI | MR | Zbl
[11] V. E. Zakharov, V. S. Lvov, G. E. Falkovich, Kolmogorov spectra of turbulence, Springer-Verlag, Berlin, 1992 | Zbl