Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 42-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper a two-variable kinetic model of heterogeneous catalytic hydrogen oxidation on metallic catalysts is presented. The dynamical system that depends continuously on a set of real parameters is under study, i.e., we consider continuous families of dynamical systems. Our attention focusses on the description of the changes observed in flows depending upon one parameter, primarily, on the maximal families of periodic solutions. We deal with the global bifurcation properties of periodic orbits which can not be deduced from the local information and which engender in the flow the sensitive dependence on the initial conditions. The simplest of these involves the occurrence of planar homoclinic orbits. Studying the one-parameter family of two-variable systems with fast and slow variables it has become clear that the parametric sensitivity appears due to existence of stable and unstable canard cycles which occur close to the Hopf bifurcation. We describe some specific bundles of trajectories such as tunnels, whirlpools, and showers which illustrate a high sensitivity to the initial conditions. A new algorithm for refinement of a homoclinic orbit in one-parameter family of planar vector fields is proposed in the paper.
@article{VNGU_2005_5_4_a3,
     author = {E. A. Lashina and G. A. Chumakov and N. A. Chumakova},
     title = {Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {42--59},
     year = {2005},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a3/}
}
TY  - JOUR
AU  - E. A. Lashina
AU  - G. A. Chumakov
AU  - N. A. Chumakova
TI  - Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 42
EP  - 59
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a3/
LA  - ru
ID  - VNGU_2005_5_4_a3
ER  - 
%0 Journal Article
%A E. A. Lashina
%A G. A. Chumakov
%A N. A. Chumakova
%T Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 42-59
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a3/
%G ru
%F VNGU_2005_5_4_a3
E. A. Lashina; G. A. Chumakov; N. A. Chumakova. Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 42-59. http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a3/

[1] G. A. Chumakov, M. G. Slinko, “Kineticheskaya turbulentnost (khaos) skorosti reaktsii vzaimodeistviya vodoroda s kislorodom na metallicheskikh katalizatorakh”, Dokl. AN SSSR, 266:5 (1982), 1194–1198

[2] G. A. Chumakov, N. A. Chumakova, “Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards”, Chem. Eng. J., 91:2–3 (2003), 151–158 | DOI

[3] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[4] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967 | MR

[5] G. A. Chumakov, Analiz matematicheskikh modelei avtokolebanii skorosti geterogennoi kataliticheskoi reaktsii, Dis. ... kand. fiz.-mat. nauk, NGU, Novosibirsk, 1985

[6] G. A. Chumakov, V. D. Belyaev, R. Plikhta, V. I. Timoshenko, M. G. Slinko, “Chislo i ustoichivost statsionarnykh sostoyanii chetyrekhstadiinoi reaktsii”, Dokl. AN SSSR, 253:2 (1980), 418–421

[7] E. A. Ivanova, N. A. Chumakova, G. A. Chumakov, “An algorithm for the saddle-loop homoclinic orbit finding in two-dimensional kinetic model”, Trudy konferentsii po vychislitelnoi matematike MKVM-2004 (Novosibirsk, 2004), 870–875

[8] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[9] A. K. Zvonkin, M. A. Shubin, “Nestandartnyi analiz i singulyarnye vozmuscheniya obyknovennykh differentsialnykh uravnenii”, Uspekhi mat. nauk, 39:2 (1984), 77–124

[10] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[11] S. K. Godunov, Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997

[12] E. A. Ivanova, N. A. Chumakova, “Otsenka globalnoi oshibki diskretizatsii na periodicheskikh resheniyakh i resheniyakh-utkakh odnoi kineticheskoi modeli”, Tezisy dokladov Mezhdunarodnoi konferentsii molodykh uchenykh po matematicheskomu modelirovaniyu i informatike (Novosibirsk, 2002), 29