Prisms in $H^3$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 14-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Main result of this work is a formula for calculation of volume of compact quadrangular prism of special type. We prove that any acute prism in $H^3$ can be divided into finite number of given type. So, it gives an algorithm to find volume of arbitrary $n$-angled prism in $H^3$ with dihedral angles less than $\pi/2$. Also, we state the full classification of quadrangular Coxeter prisms in $H^3$. In addendum, there are all 30 Coxeter schemes, corresponding to quadrangular prisms and their hyperbolic volumes.
@article{VNGU_2005_5_4_a1,
     author = {D. A. Derevnin},
     title = {Prisms in $H^3$},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {14--31},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a1/}
}
TY  - JOUR
AU  - D. A. Derevnin
TI  - Prisms in $H^3$
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 14
EP  - 31
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a1/
LA  - ru
ID  - VNGU_2005_5_4_a1
ER  - 
%0 Journal Article
%A D. A. Derevnin
%T Prisms in $H^3$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 14-31
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a1/
%G ru
%F VNGU_2005_5_4_a1
D. A. Derevnin. Prisms in $H^3$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 14-31. http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a1/