Prisms in $H^3$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 14-31
Voir la notice de l'article provenant de la source Math-Net.Ru
Main result of this work is a formula for calculation of volume of compact quadrangular prism of special type. We prove that any acute prism in $H^3$ can be divided into finite number of given type. So, it gives an algorithm to find volume of arbitrary $n$-angled prism in $H^3$ with dihedral angles less than $\pi/2$. Also, we state the full classification of quadrangular Coxeter prisms in $H^3$. In addendum, there are all 30 Coxeter schemes, corresponding to quadrangular prisms and their hyperbolic volumes.
@article{VNGU_2005_5_4_a1,
author = {D. A. Derevnin},
title = {Prisms in $H^3$},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {14--31},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a1/}
}
D. A. Derevnin. Prisms in $H^3$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 4, pp. 14-31. http://geodesic.mathdoc.fr/item/VNGU_2005_5_4_a1/