Some remarks about constructive extensions of minimal logic
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 75-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the disjunction property for the extensions of minimal logic. Two continual classes of proper paraconsistent extensions with the disjunction property are defined. Besides, we obtain algebraic and semantic characteristics of the paraconsistent analog of the Kreisel–Putnam logic $L_{KP}$ and prove that $L_{KP}\in DP$.
@article{VNGU_2005_5_3_a5,
     author = {M. V. Stukacheva},
     title = {Some remarks about constructive extensions of minimal logic},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {75--88},
     year = {2005},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a5/}
}
TY  - JOUR
AU  - M. V. Stukacheva
TI  - Some remarks about constructive extensions of minimal logic
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 75
EP  - 88
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a5/
LA  - ru
ID  - VNGU_2005_5_3_a5
ER  - 
%0 Journal Article
%A M. V. Stukacheva
%T Some remarks about constructive extensions of minimal logic
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 75-88
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a5/
%G ru
%F VNGU_2005_5_3_a5
M. V. Stukacheva. Some remarks about constructive extensions of minimal logic. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 75-88. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a5/

[1] S. P. Odintsov, “Maximal paraconsistent extension of Johansson logic”, Logique at Analyse, 161–163 (2000), 107–120 | MR

[2] S. P. Odintsov, “Representation of $j$-algebras and Segerberg's logics”, Logique at Analyse, 165–166 (1999), 81–106 ; Philosophy, 7 (1999) ; 8 (2000) | MR | Zbl | Zbl

[3] D. M. Gabbay, “The decidability of the Kreisel–Putnam system”, JSL, 35 (1970), 54–63 | MR

[4] D. M. Gabbay, D. H. J. De Jong, “A sequence of decidable finitely axiomatazible intermediate logics with the disjunctive property”, JSL, 39 (1974), 67–78 | MR | Zbl

[5] P. Minari, “On the extensions of intuitionistic propositional logic with Kreisel–Putnam's and Scott's schemes”, Studia Logica, 155 (1986), 55–68 | DOI | MR

[6] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland, Amsterdam, 1974 | MR | Zbl

[7] K. Segerberg, “Propositional Logics Related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[8] A. Chagrov, M. Zakharyaschev, “The Disjunction Property of intermediate propositional logics”, Studia Logica, 45 (1986), 189–215 | MR

[9] M. V. Stukacheva, “O diz'yunktivnom svoistve v klasse paraneprotivorechivykh rasshirenii minimalnoi logiki”, Algebra i logika, 43:2 (2004), 235–252 | MR | Zbl