$q$-Duality of Prym differentials on compact Riemann surfaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 57-74
Cet article a éte moissonné depuis la source Math-Net.Ru
A general strict $q$-duality of Prym differentials for $q\in\mathbb{Z}$ on compact Riemann surface of genus $g\geqslant1$ and an index of dual complement for strict classical duality (when $q=1$) are introduced. The dimensions of spaces of strictly dual Prym differentials are obtained and their connection with the analytical equations in the Jacobian variety is established.
@article{VNGU_2005_5_3_a4,
author = {O. A. Sergeeva},
title = {$q${-Duality} of {Prym} differentials on compact {Riemann} surfaces},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {57--74},
year = {2005},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/}
}
O. A. Sergeeva. $q$-Duality of Prym differentials on compact Riemann surfaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 57-74. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/
[1] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New-York, 1991 | MR
[2] V. V. Chueshev, Multiplikativnye funktsii i differentsialy Prima na peremennoi kompaktnoi rimanovoi poverkhnosti, v. 2, KemGU, Kemerovo, 2003
[3] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii”, UMN, 26:1 (1971), 113–179 | MR | Zbl
[4] Yu. L. Rodin, “Struktura obschego resheniya kraevoi zadachi Rimana dlya golomorfnoi vektor-funktsii na kompaktnoi rimanovoi poverkhnosti”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 109–120