$q$-Duality of Prym differentials on compact Riemann surfaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 57-74
Voir la notice de l'article provenant de la source Math-Net.Ru
A general strict $q$-duality of Prym differentials for $q\in\mathbb{Z}$ on compact Riemann surface of genus $g\geqslant1$ and an index of dual complement for strict classical duality (when $q=1$) are introduced. The dimensions of spaces of strictly dual Prym differentials are obtained and their connection with the analytical equations in the Jacobian variety is established.
@article{VNGU_2005_5_3_a4,
author = {O. A. Sergeeva},
title = {$q${-Duality} of {Prym} differentials on compact {Riemann} surfaces},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {57--74},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/}
}
O. A. Sergeeva. $q$-Duality of Prym differentials on compact Riemann surfaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 57-74. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/