$q$-Duality of Prym differentials on compact Riemann surfaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 57-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general strict $q$-duality of Prym differentials for $q\in\mathbb{Z}$ on compact Riemann surface of genus $g\geqslant1$ and an index of dual complement for strict classical duality (when $q=1$) are introduced. The dimensions of spaces of strictly dual Prym differentials are obtained and their connection with the analytical equations in the Jacobian variety is established.
@article{VNGU_2005_5_3_a4,
     author = {O. A. Sergeeva},
     title = {$q${-Duality} of {Prym} differentials on compact {Riemann} surfaces},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {57--74},
     year = {2005},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/}
}
TY  - JOUR
AU  - O. A. Sergeeva
TI  - $q$-Duality of Prym differentials on compact Riemann surfaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 57
EP  - 74
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/
LA  - ru
ID  - VNGU_2005_5_3_a4
ER  - 
%0 Journal Article
%A O. A. Sergeeva
%T $q$-Duality of Prym differentials on compact Riemann surfaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 57-74
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/
%G ru
%F VNGU_2005_5_3_a4
O. A. Sergeeva. $q$-Duality of Prym differentials on compact Riemann surfaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 57-74. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a4/

[1] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New-York, 1991 | MR

[2] V. V. Chueshev, Multiplikativnye funktsii i differentsialy Prima na peremennoi kompaktnoi rimanovoi poverkhnosti, v. 2, KemGU, Kemerovo, 2003

[3] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[4] Yu. L. Rodin, “Struktura obschego resheniya kraevoi zadachi Rimana dlya golomorfnoi vektor-funktsii na kompaktnoi rimanovoi poverkhnosti”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 109–120