Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 43-56
Voir la notice de l'article provenant de la source Math-Net.Ru
Under consideration is the equation
$$
Mu=L_0(x,t,D_x)u_t+L_1(x,t,D_x)u=f(x,t),\quad(x,t)\in Q=G\times(0,T),
$$
where $G\subset\mathbb{R}^n$ is a bounded domain with boundary $\Gamma$ and $L_0$, $L_1$ are elliptic operators of the second and forth order, respectively. The boundary conditions are of the form
$$
u|_S=\varphi(x,t), \quad\frac{\partial u}{\partial n}\Bigl|_S=\psi(x,t), \quad u|_{t=0}=u_0(x), \quad S=\Gamma\times(0,T).
$$
It is demonstrated that this problem is uniquely solvable in the weighted Sobolev space
whose norm is defined by the equality
$$
\|u\|^p=\sum_{|\alpha|\leqslant2}\|\rho D^\alpha u_t\|^p_{L_p(Q)}+\sum_{|\alpha|\leqslant4}\|\rho D^\alpha u\|^p_{L_p(Q)},
$$
where $\rho(x)$ is the distance from a point $x$ to $\Gamma$.
@article{VNGU_2005_5_3_a3,
author = {S. G. Pyatkov},
title = {Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {43--56},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/}
}
TY - JOUR AU - S. G. Pyatkov TI - Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2005 SP - 43 EP - 56 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/ LA - ru ID - VNGU_2005_5_3_a3 ER -
%0 Journal Article %A S. G. Pyatkov %T Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2005 %P 43-56 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/ %G ru %F VNGU_2005_5_3_a3
S. G. Pyatkov. Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 43-56. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/