Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 43-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under consideration is the equation $$ Mu=L_0(x,t,D_x)u_t+L_1(x,t,D_x)u=f(x,t),\quad(x,t)\in Q=G\times(0,T), $$ where $G\subset\mathbb{R}^n$ is a bounded domain with boundary $\Gamma$ and $L_0$, $L_1$ are elliptic operators of the second and forth order, respectively. The boundary conditions are of the form $$ u|_S=\varphi(x,t), \quad\frac{\partial u}{\partial n}\Bigl|_S=\psi(x,t), \quad u|_{t=0}=u_0(x), \quad S=\Gamma\times(0,T). $$ It is demonstrated that this problem is uniquely solvable in the weighted Sobolev space whose norm is defined by the equality $$ \|u\|^p=\sum_{|\alpha|\leqslant2}\|\rho D^\alpha u_t\|^p_{L_p(Q)}+\sum_{|\alpha|\leqslant4}\|\rho D^\alpha u\|^p_{L_p(Q)}, $$ where $\rho(x)$ is the distance from a point $x$ to $\Gamma$.
@article{VNGU_2005_5_3_a3,
     author = {S. G. Pyatkov},
     title = {Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {43--56},
     year = {2005},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 43
EP  - 56
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/
LA  - ru
ID  - VNGU_2005_5_3_a3
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 43-56
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/
%G ru
%F VNGU_2005_5_3_a3
S. G. Pyatkov. Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 43-56. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a3/

[1] A. I. Kozhanov, Composite type equations and inverse problems, VSP, Utrecht, 1999 | MR | Zbl

[2] Yu. Ya. Belov, “Inverse problems for parabolic equations”, J. Inv. Ill-Posed Problems, 1:4 (1993), 283–301 | DOI | MR

[3] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshenye otnositelno starshei proizvodnoi, Nauchnaya kniga, N., 1998

[4] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Usp. matem. nauk, 19:3 (1964), 53–161 | MR | Zbl

[5] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[6] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka. Fizmatlit, M., 1996

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[8] P. Grisvard, “Commutative de deux functeurs d'interpolation et applications”, J. Math. Pures et Appliq., 45:2 (1966), 144–206

[9] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie operatorno-differentsialnye uravneniya, Nauka, N., 2000

[10] S. Agmon, A. Duglis, L. Nirenberg, Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh vblizi granitsy, Inostrannaya literatura, M., 1962

[11] S. Agmon, Lectures on elliptic boundary value problems, D. Van Nostrand Company, Inc., Princeton–New York–Toronto–London, 1965 | MR | Zbl

[12] P. Grisvard, G. Da Prato, “Sommes d'operatours lineaires et equations differentielles operationnelles”, J. Math. Pures et Appl., 54:2 (1975), 305–387 | MR | Zbl