Simulation of flows with vapor-liquid interfaces using lattice Boltzmann equation method
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 29-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of simulation of fluid flows with vapor-liquid interfaces including newly generated in bulk of liquid is proposed. Instead of discontinuity, interfaces between liquid and vapor are represented as thin transition layers of finite width (several nodes of lattice) where density changes smoothly from one bulk value to another (by analogy to shock-capturing method for shock waves in gasdynamics). In proposed variant of lattice Boltzmann equation (LBE) method, the phase transitions can be simulated for equations of state of arbitrary form. For flat transition layer, the coexistence curve is reproduced with high accuracy in the wide enough range of reduced temperature from the critical point down to $\tilde{T}\approx0.4$. For stationary vapor-liquid transition layers, the density relation was obtained of order $10^5$$10^6$ that can not be realized using previous variants of LBE methods.
@article{VNGU_2005_5_3_a2,
     author = {A. L. Kuperschtokh},
     title = {Simulation of flows with vapor-liquid interfaces using lattice {Boltzmann} equation method},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {29--42},
     year = {2005},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/}
}
TY  - JOUR
AU  - A. L. Kuperschtokh
TI  - Simulation of flows with vapor-liquid interfaces using lattice Boltzmann equation method
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 29
EP  - 42
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/
LA  - ru
ID  - VNGU_2005_5_3_a2
ER  - 
%0 Journal Article
%A A. L. Kuperschtokh
%T Simulation of flows with vapor-liquid interfaces using lattice Boltzmann equation method
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 29-42
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/
%G ru
%F VNGU_2005_5_3_a2
A. L. Kuperschtokh. Simulation of flows with vapor-liquid interfaces using lattice Boltzmann equation method. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 29-42. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/

[1] G. R. McNamara, G. Zanetti, “Use of the Boltzmann equation to simulate lattice-gas automata”, Phys. Rev. Lett., 61:20 (1988), 2332–2335 | DOI

[2] F. J. Higuera, J. Jiménez, “Boltzmann approach to lattice gas simulations”, Europhys. Lett., 9:7 (1989), 663–668 | DOI

[3] S. Chen, G. D. Doolen, “Lattice Boltzmann method for fluid flow”, Annu. Rev. Fluid Mech., 30 (1998), 329–364 | DOI | MR

[4] X. He, S. Chen, G. D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit”, J. Comp. Phys., 146:1 (1998), 282–300 | DOI | MR | Zbl

[5] R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, D. Joseph, “The lattice Boltzmann equation method: theoretical interpretation, numerics and implications”, Int. J. of Multiphase Flow, 29:1 (2003), 117–169 | DOI | Zbl

[6] X. Shan, H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components”, Phys. Rev. E, 47:3 (1993), 1815–1819 | DOI

[7] X. Shan, H. Chen, “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation”, Phys. Rev. E, 49:4 (1994), 2941–2948 | DOI

[8] R. Zhang, H. Chen, “Lattice Boltzmann method for simulations of liquid-vapor thermal flows”, Phys. Rev. E, 67:6 (2003), 066711-1–066711-6 | DOI

[9] Y. Chen, S. Teng, T. Shukuwa, H. Ohashi, “Lattice-Boltzmann simulation of two-phase flows”, Int. J. Modern Physics C, 9:8 (1998), 1383–1391 | DOI

[10] B. J. Palmer, D. R. Rector, “Lattice-Boltzmann algorithm for simulating thermal two-phase flow”, Phys. Rev. E, 61:5 (2000), 5295–5306 | DOI | MR

[11] R. R. Nourgaliev, T. N. Dinh, B. R. Sehgal, “On lattice Boltzmann modeling of phase transition in an isothermal non-ideal fluid”, Nuclear Engineering and Design, 211:2/3 (2002), 153–171 | DOI

[12] A. N. Kalarakis, V. N. Burganos, A. C. Payatakes, “Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics”, Phys. Rev. E, 65:5 (2002), 056702-1–056702-13 | DOI

[13] G. Hazi, A. R. Imre, G. Mayer, I. Farkas, “Lattice Boltzmann methods for two-phase flow modeling”, Ann. Nuclear Energy, 29 (2002), 1421–1453 | DOI

[14] J. Zhang, B. Li, D. Y. Kwok, “Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces”, Phys. Rev. E, 69:3 (2004), 032602-1–032602-4 | DOI

[15] J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19 (1964), 401–414 | DOI | MR | Zbl

[16] J. E. Broadwell, “Shock structure in a simple discrete velocity gas”, Phys. Fluids, 7 (1964), 1243–1247 | DOI | Zbl

[17] Y. H. Qian, D. d'Humières, P. Lallemand, “Lattice BGK models for Navier–Stokes equation”, Europhys. Lett., 17:6 (1992), 479–484 | DOI | Zbl

[18] P. L. Bhatnagar, E. P. Gross, M. K. Krook, “A model for collision process in gases. I: Small amplitude process in charged and neutral one-component system”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[19] S. Wolfram, “Cellular automaton fluids. 1: Basic theory”, J. Stat. Phys., 45:3/4 (1986), 471–526 | DOI | MR | Zbl

[20] Y. Chen, H. Ohashi, M. Akiyama, “Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macroscopic equations”, Phys. Rev. E, 50:4 (1994), 2776–2783 | DOI

[21] A. L. Kupershtokh, “Calculations of the action of electric forces in the lattice Boltzmann equation method using the difference of equilibrium distribution functions”, Sovremennye problemy elektrofiziki i elektrogidrodinamiki zhidkostei, Materialy 7-i Mezhdunarodn. nauch. konf., SPbGU, Sankt-Peterburg, 2003, 152–155

[22] A. L. Kupershtokh, “New method of incorporating a body force term into the lattice Boltzmann equation”, Proc. 5th International EHD Workshop (Poitiers, France, 2004), 241–246

[23] A. L. Kupershtokh, “Uchet deistviya ob'emnykh sil v reshetochnykh uravneniyakh Boltsmana”, Vestnik NGU, Seriya: matematika, mekhanika i informatika, 4:2 (2004), 75–96 | Zbl

[24] X. He, X. Shan, G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases”, Phys. Rev. E, 57:1 (1998), R13–R16

[25] L.-S. Luo, “Unified theory of lattice Boltzmann models for nonideal gases”, Phys. Rev. Lett., 81:8 (1998), 1618–1621 | DOI

[26] L.-S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases”, Phys. Rev. E, 62:4 (2000), 4982–4996 | DOI | MR

[27] A. J. C. Ladd, R. Verberg, “Lattice-Boltzmann simulations of particle-fluid suspension”, J. Stat. Phys., 104:5/6 (2001), 1191–1251 | DOI | MR | Zbl

[28] Z. Guo, C. Zheng, B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method”, Phys. Rev. E, 65:4 (2002), 046308-1–046308-6 | DOI

[29] X. He, G. D. Doolen, “Thermodynamic foundation of kinetic theory and lattice Boltzmann models for multiphase flows”, J. Stat. Phys., 107:1/2 (2002), 309–328 | MR | Zbl