@article{VNGU_2005_5_3_a2,
author = {A. L. Kuperschtokh},
title = {Simulation of flows with vapor-liquid interfaces using lattice {Boltzmann} equation method},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {29--42},
year = {2005},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/}
}
TY - JOUR AU - A. L. Kuperschtokh TI - Simulation of flows with vapor-liquid interfaces using lattice Boltzmann equation method JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2005 SP - 29 EP - 42 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/ LA - ru ID - VNGU_2005_5_3_a2 ER -
A. L. Kuperschtokh. Simulation of flows with vapor-liquid interfaces using lattice Boltzmann equation method. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 29-42. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a2/
[1] G. R. McNamara, G. Zanetti, “Use of the Boltzmann equation to simulate lattice-gas automata”, Phys. Rev. Lett., 61:20 (1988), 2332–2335 | DOI
[2] F. J. Higuera, J. Jiménez, “Boltzmann approach to lattice gas simulations”, Europhys. Lett., 9:7 (1989), 663–668 | DOI
[3] S. Chen, G. D. Doolen, “Lattice Boltzmann method for fluid flow”, Annu. Rev. Fluid Mech., 30 (1998), 329–364 | DOI | MR
[4] X. He, S. Chen, G. D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit”, J. Comp. Phys., 146:1 (1998), 282–300 | DOI | MR | Zbl
[5] R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, D. Joseph, “The lattice Boltzmann equation method: theoretical interpretation, numerics and implications”, Int. J. of Multiphase Flow, 29:1 (2003), 117–169 | DOI | Zbl
[6] X. Shan, H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components”, Phys. Rev. E, 47:3 (1993), 1815–1819 | DOI
[7] X. Shan, H. Chen, “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation”, Phys. Rev. E, 49:4 (1994), 2941–2948 | DOI
[8] R. Zhang, H. Chen, “Lattice Boltzmann method for simulations of liquid-vapor thermal flows”, Phys. Rev. E, 67:6 (2003), 066711-1–066711-6 | DOI
[9] Y. Chen, S. Teng, T. Shukuwa, H. Ohashi, “Lattice-Boltzmann simulation of two-phase flows”, Int. J. Modern Physics C, 9:8 (1998), 1383–1391 | DOI
[10] B. J. Palmer, D. R. Rector, “Lattice-Boltzmann algorithm for simulating thermal two-phase flow”, Phys. Rev. E, 61:5 (2000), 5295–5306 | DOI | MR
[11] R. R. Nourgaliev, T. N. Dinh, B. R. Sehgal, “On lattice Boltzmann modeling of phase transition in an isothermal non-ideal fluid”, Nuclear Engineering and Design, 211:2/3 (2002), 153–171 | DOI
[12] A. N. Kalarakis, V. N. Burganos, A. C. Payatakes, “Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics”, Phys. Rev. E, 65:5 (2002), 056702-1–056702-13 | DOI
[13] G. Hazi, A. R. Imre, G. Mayer, I. Farkas, “Lattice Boltzmann methods for two-phase flow modeling”, Ann. Nuclear Energy, 29 (2002), 1421–1453 | DOI
[14] J. Zhang, B. Li, D. Y. Kwok, “Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces”, Phys. Rev. E, 69:3 (2004), 032602-1–032602-4 | DOI
[15] J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19 (1964), 401–414 | DOI | MR | Zbl
[16] J. E. Broadwell, “Shock structure in a simple discrete velocity gas”, Phys. Fluids, 7 (1964), 1243–1247 | DOI | Zbl
[17] Y. H. Qian, D. d'Humières, P. Lallemand, “Lattice BGK models for Navier–Stokes equation”, Europhys. Lett., 17:6 (1992), 479–484 | DOI | Zbl
[18] P. L. Bhatnagar, E. P. Gross, M. K. Krook, “A model for collision process in gases. I: Small amplitude process in charged and neutral one-component system”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl
[19] S. Wolfram, “Cellular automaton fluids. 1: Basic theory”, J. Stat. Phys., 45:3/4 (1986), 471–526 | DOI | MR | Zbl
[20] Y. Chen, H. Ohashi, M. Akiyama, “Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macroscopic equations”, Phys. Rev. E, 50:4 (1994), 2776–2783 | DOI
[21] A. L. Kupershtokh, “Calculations of the action of electric forces in the lattice Boltzmann equation method using the difference of equilibrium distribution functions”, Sovremennye problemy elektrofiziki i elektrogidrodinamiki zhidkostei, Materialy 7-i Mezhdunarodn. nauch. konf., SPbGU, Sankt-Peterburg, 2003, 152–155
[22] A. L. Kupershtokh, “New method of incorporating a body force term into the lattice Boltzmann equation”, Proc. 5th International EHD Workshop (Poitiers, France, 2004), 241–246
[23] A. L. Kupershtokh, “Uchet deistviya ob'emnykh sil v reshetochnykh uravneniyakh Boltsmana”, Vestnik NGU, Seriya: matematika, mekhanika i informatika, 4:2 (2004), 75–96 | Zbl
[24] X. He, X. Shan, G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases”, Phys. Rev. E, 57:1 (1998), R13–R16
[25] L.-S. Luo, “Unified theory of lattice Boltzmann models for nonideal gases”, Phys. Rev. Lett., 81:8 (1998), 1618–1621 | DOI
[26] L.-S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases”, Phys. Rev. E, 62:4 (2000), 4982–4996 | DOI | MR
[27] A. J. C. Ladd, R. Verberg, “Lattice-Boltzmann simulations of particle-fluid suspension”, J. Stat. Phys., 104:5/6 (2001), 1191–1251 | DOI | MR | Zbl
[28] Z. Guo, C. Zheng, B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method”, Phys. Rev. E, 65:4 (2002), 046308-1–046308-6 | DOI
[29] X. He, G. D. Doolen, “Thermodynamic foundation of kinetic theory and lattice Boltzmann models for multiphase flows”, J. Stat. Phys., 107:1/2 (2002), 309–328 | MR | Zbl