Asymptotic properties of solutions to delay differential equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 20-28
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider quasilinear systems of delay differential equations with constant coefficients in linear terms. We obtain sufficient conditions of asymptotic stability of the zero solution, establish estimates of decay rates of solutions at infinity, and find attraction domains of the zero solution. The results are stated in terms of a modified Lyapunov–Krasovskii functional.
@article{VNGU_2005_5_3_a1,
author = {G. V. Demidenko and I. I. Matveeva},
title = {Asymptotic properties of solutions to delay differential equations},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {20--28},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/}
}
TY - JOUR AU - G. V. Demidenko AU - I. I. Matveeva TI - Asymptotic properties of solutions to delay differential equations JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2005 SP - 20 EP - 28 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/ LA - ru ID - VNGU_2005_5_3_a1 ER -
G. V. Demidenko; I. I. Matveeva. Asymptotic properties of solutions to delay differential equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 20-28. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/