Asymptotic properties of solutions to delay differential equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 20-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider quasilinear systems of delay differential equations with constant coefficients in linear terms. We obtain sufficient conditions of asymptotic stability of the zero solution, establish estimates of decay rates of solutions at infinity, and find attraction domains of the zero solution. The results are stated in terms of a modified Lyapunov–Krasovskii functional.
@article{VNGU_2005_5_3_a1,
     author = {G. V. Demidenko and I. I. Matveeva},
     title = {Asymptotic properties of solutions to delay differential equations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {20--28},
     year = {2005},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - I. I. Matveeva
TI  - Asymptotic properties of solutions to delay differential equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 20
EP  - 28
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/
LA  - ru
ID  - VNGU_2005_5_3_a1
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A I. I. Matveeva
%T Asymptotic properties of solutions to delay differential equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 20-28
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/
%G ru
%F VNGU_2005_5_3_a1
G. V. Demidenko; I. I. Matveeva. Asymptotic properties of solutions to delay differential equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 20-28. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a1/

[1] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[2] L. E. Elsgolts, S. B. Norkin, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[3] D. G. Korenevskii, Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Naukova dumka, Kiev, 1989 | MR

[4] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[5] S. K. Godunov, Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997

[6] J. P. Richard, “Time-delay systems: an overview of some recent advances and open problems”, Automatica, 39 (2003), 1667–1694 | DOI | MR | Zbl

[7] G. V. Demidenko, I. I. Matveeva, “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 42:2 (2001), 332–348 | MR | Zbl

[8] G. V. Demidenko, I. I. Matveeva, “Ob ustoichivosti reshenii kvazilineinykh periodicheskikh sistem differentsialnykh uravnenii”, Sib. mat. zhurn., 45:6 (2004), 1271–1284 | MR | Zbl