The filling of condensers and kernel-type convergence
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 3-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The kernel convergence of sequences of condensers in a connected and locally connected metric space is investigated in this paper. This type of convergence has been introduced here with using the topological operation of filling. The general theorem states that the continuity of a condenser’s characteristic under the topological convergence is tranferred to the case of kernel convergent sequences of condensers. In particularly, the continuity of conformal capacity is proved for the kernel-convergent sequences of condensers with uniformly perfect plates.
@article{VNGU_2005_5_3_a0,
     author = {V. V. Aseev and A. V. Sychev},
     title = {The filling of condensers and kernel-type convergence},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--19},
     year = {2005},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a0/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - A. V. Sychev
TI  - The filling of condensers and kernel-type convergence
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 3
EP  - 19
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a0/
LA  - ru
ID  - VNGU_2005_5_3_a0
ER  - 
%0 Journal Article
%A V. V. Aseev
%A A. V. Sychev
%T The filling of condensers and kernel-type convergence
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 3-19
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a0/
%G ru
%F VNGU_2005_5_3_a0
V. V. Aseev; A. V. Sychev. The filling of condensers and kernel-type convergence. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/VNGU_2005_5_3_a0/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] O. Lehto, K. I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin—Heidelberg–New York, 1965 | MR | Zbl

[3] F. W. Gehring, “The Caratheodory convergence theorem for quasiconformal mappings in space”, Ann. Acad. Sci. Fenn., Ser. A1, 336:11 (1963), 1–21 | MR

[4] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lect. Notes Math., 229, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR

[5] S. K. Vodopyanov, “Otobrazheniya s ogranichennym iskazheniem i konechnym iskazheniem na gruppakh Karno”, Sib. mat. zh., 40:4 (1999), 764–804 | MR

[6] S. K. Vodopyanov, “P-differentiability on Carno groups in different topologies and related topics”, Trudy po analizu i geometrii, Izd-vo In-ta matematiki, Novosibirsk, 2000, 603–670 | MR | Zbl

[7] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005

[8] J. Heinonen, Lectures on analysis on metric spaces, Springer-Verlag, New York e.o., 2001 | MR | Zbl

[9] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, In-t kompyutern. issl., M.–Izhevsk, 2004

[10] S. R. Nasyrov, “Bikompaktnost prostranstv rimanovykh poverkhnostei v topologii, indutsirovannoi skhodimostyu k yadru”, Tr. sem. po kraevym zadacham, Kazan, 1986, 174–187

[11] Yu. Yu. Trokhimchuk, “K teorii posledovatelnostei rimanovykh poverkhnostei”, Ukr. mat. zh., 4:1 (1952), 49–56 | Zbl

[12] A. V. Sychev, “O nekotorykh svoistvakh modulei”, Sib. mat. zh., 6:5 (1965), 1108–1119 | MR | Zbl

[13] F. W. Gehring, “Quasiconformal mappings”, Complex Analysis and its Applications, Lect. Int. Semin. Course (Trieste, 1975) | MR

[14] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971

[15] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. n., 49:1 (295) (1994), 3–76 | MR | Zbl

[16] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983

[17] V. V. Aseev, “Nepreryvnost konformnoi emkosti dlya kondensatorov s ravnomerno sovershennymi plastinami”, Sib. mat. zh., 40:2 (1999), 243–253 | MR | Zbl

[18] R. Engelking, Obschaya topologiya, Mir, M., 1986

[19] K. Kuratovskii, Topologiya, v. 2, Mir, M., 1969

[20] V. V. Aseev, A. V. Sychev, Zapolnenie kondensatorov i skhodimost k yadru, Preprint No 146, RAN. Sib. otd-nie, Institut matematiki, Novosibirsk, 2004

[21] K. Kuratovskii, Topologiya, v. 1, Mir, M., 1966

[22] B. P. Kufarev, “Metrizatsiya prostranstva oblastei”, Voprosy geometricheskoi teorii funktsii. Vyp. 1, Trudy TGU, ser. mekh.-mat., 169, Tomsk, 1963, 3–7

[23] P. Järvi, M. Vuorinen, “Uniformly perfect sets and quasiregular mappings”, J. London Math. Soc. (2), 174 (1996), 515–529 | DOI | MR