Coercive properties of ordinary differential operator of even order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 86-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic question which we explore in this work — question about conditions at realization of which for given ordinary differential operator of order of $2m$, with a higher coefficient changing a sign on the interval of task, take place properties of coercively.
@article{VNGU_2005_5_2_a5,
     author = {A. V. Chueshev},
     title = {Coercive properties of ordinary differential operator of even order},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {86--105},
     year = {2005},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a5/}
}
TY  - JOUR
AU  - A. V. Chueshev
TI  - Coercive properties of ordinary differential operator of even order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 86
EP  - 105
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a5/
LA  - ru
ID  - VNGU_2005_5_2_a5
ER  - 
%0 Journal Article
%A A. V. Chueshev
%T Coercive properties of ordinary differential operator of even order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 86-105
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a5/
%G ru
%F VNGU_2005_5_2_a5
A. V. Chueshev. Coercive properties of ordinary differential operator of even order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 86-105. http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a5/

[1] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya, II”, Matem. sb., 21 (63) (1947), 365–404 | MR | Zbl

[2] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[3] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[4] S. G. Pyatkov, “Interpolation of weighted Sobolev spaces”, Sib. Adv. Math., 10:3–4 (2000), 83–132 | MR | Zbl

[5] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[6] A. V. Chueshev, “Resolvent estimates for ordinary differential operators of mixed type”, Sib. Adv. Math., 10:4 (2000), 15–67 | MR | Zbl