The subvarieties in Shottkys space and the two-generated groups of conformal automorphismes
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 58-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work topological and analytical properties of subvarieties in Teichmüllers space $\mathbb{T}_h$, consisting of marked compact Riemann surfaces of genus $h\geqslant2$, which admit special two-generated groupes of conformal automorphismes and propeties of subvarieties in Shottkys space associating to it are studied. For this purpose are considered two cases of special two-generated groupes of conformal automorphismes on marked compact Riemann surface.
@article{VNGU_2005_5_2_a3,
     author = {O. A. Sergeeva},
     title = {The subvarieties in {Shottkys} space and the two-generated groups of conformal automorphismes},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {58--76},
     year = {2005},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a3/}
}
TY  - JOUR
AU  - O. A. Sergeeva
TI  - The subvarieties in Shottkys space and the two-generated groups of conformal automorphismes
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 58
EP  - 76
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a3/
LA  - ru
ID  - VNGU_2005_5_2_a3
ER  - 
%0 Journal Article
%A O. A. Sergeeva
%T The subvarieties in Shottkys space and the two-generated groups of conformal automorphismes
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 58-76
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a3/
%G ru
%F VNGU_2005_5_2_a3
O. A. Sergeeva. The subvarieties in Shottkys space and the two-generated groups of conformal automorphismes. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 58-76. http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a3/

[1] L. Alfors, L. Bers, Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M., 1961

[2] V. G. Sheretov, “O podmnogoobraziyakh v prostranstve Teikhmyullera”, Uchenye zapiski Permskogo gos. un-ta, 218 (1969), 90–98

[3] V. V. Chueshev, “Konformnye avtomorfizmy kompaktnykh rimanovykh poverkhnostei i gruppy Këbe”, Sib. matem. zh., 23:6 (1982), 196–197; ДЕП ВИНИТИ 1120-82, 21 с.

[4] V. V. Chueshev, “Prostranstva kompaktnykh rimanovykh poverkhnostei i grupp Këbe”, Sib. matem. zh., 22:5 (1981), 190–205 | MR | Zbl

[5] V. V. Chueshev, O. A. Koinova, “Ploskie modeli dlya kompaktnykh rimanovykh poverkhnostei s dvuporozhdënnymi gruppami konformnykh avtomorfizmov”, Vestnik NGU, 2:3 (2002), 11–27

[6] C. J. Earle, “On the moduli of closed Riemann surfaces with symmetries”, Advances in the theory of Riemann surfaces, Proc. of the 1969 Stony Brook Conference, Ann. of Math. Studies, 66, Princeton, 1971, 119–130 | MR

[7] C. J. Earle, J. Eells, “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73 (1967), 557–559 | DOI | MR

[8] C. J. Earle, J. Eells, “A fibre bundle description of Teichmuller theory”, J. Diff. Geom., 3 (1969), 19–43 | MR | Zbl

[9] R. A. Ruëdy, “Symmetric embedding of Riemann surfaces”, Discontinuous groups and Riemann surfaces, Ann. of Math. Studies, 79, 1974, 409–418 | MR