@article{VNGU_2005_5_2_a2,
author = {T. N. Nikitina},
title = {The one-side $\overline{\partial}$- and $\overline{\partial}^*$-closure of $CR$-forms in the fixed domain},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {28--57},
year = {2005},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a2/}
}
TY - JOUR
AU - T. N. Nikitina
TI - The one-side $\overline{\partial}$- and $\overline{\partial}^*$-closure of $CR$-forms in the fixed domain
JO - Sibirskij žurnal čistoj i prikladnoj matematiki
PY - 2005
SP - 28
EP - 57
VL - 5
IS - 2
UR - http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a2/
LA - ru
ID - VNGU_2005_5_2_a2
ER -
%0 Journal Article
%A T. N. Nikitina
%T The one-side $\overline{\partial}$- and $\overline{\partial}^*$-closure of $CR$-forms in the fixed domain
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 28-57
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a2/
%G ru
%F VNGU_2005_5_2_a2
T. N. Nikitina. The one-side $\overline{\partial}$- and $\overline{\partial}^*$-closure of $CR$-forms in the fixed domain. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 28-57. http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a2/
[1] L. A. Aizenberg, Sh. A. Dautov, Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975
[2] L. A. Aizenberg, A. M. Kytmanov, “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na svyaznom kuske ee granitsy”, Mat. sb., 182:4 (1991), 490–507 | Zbl
[3] L. A. Aizenberg, A. M. Kytmanov, “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na svyaznom kuske ee granitsy, II”, Mat. sb., 184:1 (1993), 3–15 | Zbl
[4] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979
[5] R. A. Airapetyan, G. M. Khenkin, “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya $CR$-funktsii”, UMN, 39:3 (1984), 23–124
[6] I. A. Antipova, “Primenenie logarifmicheskogo differentsiala k zadache golomorfnogo prodolzheniya $CR$-giperfunktsii”, Sib. mat. zh., 41:6 (2000), 1238–1251 | MR | Zbl
[7] A. M. Kytmanov, “Golomorfnoe prodolzhenie $CR$-funktsii s osobennostyami na giperpoverkhnosti”, Izv. AN SSSR, Ser. matem., 54:6 (1990), 1320–1330
[8] A. M. Kytmanov, Integral Bokhnera-Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992
[9] A. M. Kytmanov, T. N. Nikitina, “Golomorfnoe prodolzhenie $CR$-funktsii s osobennostyami na porozhdayuschem mnogoobrazii”, Izv. AN SSSR, Ser. matem., 56:3 (1992), 673–686 | MR
[10] B. Malgranzh, Idealy differentsiruemykh funktsii, Mir, M., 1968
[11] S. G. Myslivets, “Ob odnostoronnem golomorfnom prodolzhenii $CR$-funktsii”, INPRIM-98, Tezisy dokladov, Institut matematiki, Novosibirsk, 1998, 82
[12] S. G. Myslivets, “Ob odnom granichnom variante teoremy Morera”, Sib. mat. zh., 42:5 (2001), 1136–1146 | MR | Zbl
[13] T. N. Nikitina, “O formulakh Karlemana dlya kogomologii Dolbo na osnove logarifmicheskogo vycheta”, Mnogomernyi kompleksnyi analiz, Mezhvuz. sb., Krasnoyar. gos. un-t, 2002, 150–157
[14] T. N. Nikitina, “$\overline{\partial}$-zamknutost form, predstavimykh integralom Koppelmana na osnove logarifmicheskogo vycheta”, Simmetriya i differentsialnye uravneniya, Trudy mezhdunarodnoi konferentsii, IVM SO RAN, Krasnoyarsk, 2002, 170–174 | Zbl
[15] T. N. Nikitina, “$\overline{\partial}$- i $\overline{\partial}^*$-zamknutost form tipa $(p,q)$, predstavimykh analogom formul Grina na osnove logarifmicheskogo vycheta”, Tezisy mezhdunarodnoi konferentsii «Mnogomernyi kompleksnyi analiz», Kras. GU, IVM SO RAN, Krasnoyarsk, 2002, 32
[16] T. N. Nikitina, “Analogi formul Grina i Koppelmana dlya kogomologii Dolbo na osnove logarifmicheskogo vycheta s osobennostyami na granitse”, Voprosy matematicheskogo analiza, 6, KrasGTU, Krasnoyarsk, 2003, 152–186
[17] T. N. Nikitina, “Zadacha Dirikhle i nekotorye prilozheniya usloviya sleda dlya plyurigarmonicheskikh form i potokov v $\mathbb{C}^n$”, Voprosy matematicheskogo analiza, 7, KrasGTU, Krasnoyarsk, 2004, 63–91
[18] N. N. Tarkhanov, “Ob integralnom predstavlenii reshenii sistemy lineinykh differentsialnykh uravnenii 1 poryadka v chastnykh proizvodnykh i nekotorykh ego prilozheniyakh”, Nekotorye voprosy mnogomernogo kompleksnogo analiza, In-t fiziki im. L. V. Kirenskogo SO AN SSSR, Krasnoyarsk, 1980, 147–160
[19] N. N. Tarkhanov, A. A. Shlapunov, “Bazisy s dvoinoi ortogonalnostyu v zadache Koshi s in'ektivnym simvolom”, DAN RAN, 326:1 (1992), 45–49 | Zbl
[20] R. Uells, Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976 | MR
[21] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980
[22] G. M. Khenkin, “Uravnenie G. Levi i analiz na psevdovypuklom mnogoobrazii”, UMN, 32:3 (1977), 57–118 | MR | Zbl
[23] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR
[24] A. K. Tsikh, Mnogomernye vychety i ikh primeneniya, Nauka, Novosibirsk, 1988 | MR | Zbl
[25] E. M. Chirka, “Analiticheskoe predstavlenie $CR$-funktsii”, Mat. sb., 98:4 (1975), 591–622 | MR
[26] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. 1; 2”, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 325–363 ; 747–806 | MR | Zbl | MR | Zbl
[27] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics, CRC Press, Boston–London, 1991 | MR | Zbl
[28] J. J. Kohn, H. Rossi, “On the extension of holomorphic functions from the boundary of a complex manifold”, Ann. of Math., 81:3 (1965), 451–472 | DOI | MR | Zbl
[29] A. M. Kytmanov, T. N. Nikitina, “On the Removable Singularities of CR Functions Given on a Generic Manifolds”, Annali Mat. Pura ed Applicata (IV), CLXVII (1994), 165–189 | DOI | MR | Zbl
[30] M. Nacinovich, B. Schulze, N. N. Tarkhanov, “On Carleman Formulas for the Dolbeault Cohomology”, Ann. Univ. Ferrara, Ser. 7, Sc. Mat. Suppl., 45 (1999), 253–262 | MR | Zbl
[31] T. N. Nikitina, “$\overline{\partial}$-closure of the forms, represented by a Koppelman integral on the basis of a logarithmic residue”, Ill-Posed and Inverse Problems, International Conference, Sobolev Institute of Mathematics, Novosibirsk, 2002, 124 | MR
[32] J. Polking, R. O. Wells, “Boundary values of Dolbeault cohomology classes and a generalized Bochner–Hartogs theorem”, Abh. Math. Sem. Univ., Hamburg, 47 (1978), 3–24 | DOI | MR | Zbl