On convex hulls of self-similar sets
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 21-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S=\{s_1,\dots,s_m\}$ be a system of contraction similitudes in Banach space and $K(S)$ it's invariant set. We obtain the conditions for the convex hull $H(K)$ of the invariant set to be a finite-sided polyhedron and give an exact estimate for the diameter of $K(S)$ in terms of contraction coefficients of $s_i$.
@article{VNGU_2005_5_2_a1,
     author = {I. B. Davydkin and A. V. Tetenov},
     title = {On convex hulls of self-similar sets},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {21--27},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/}
}
TY  - JOUR
AU  - I. B. Davydkin
AU  - A. V. Tetenov
TI  - On convex hulls of self-similar sets
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 21
EP  - 27
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/
LA  - ru
ID  - VNGU_2005_5_2_a1
ER  - 
%0 Journal Article
%A I. B. Davydkin
%A A. V. Tetenov
%T On convex hulls of self-similar sets
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 21-27
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/
%G ru
%F VNGU_2005_5_2_a1
I. B. Davydkin; A. V. Tetenov. On convex hulls of self-similar sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 21-27. http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/