On convex hulls of self-similar sets
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 21-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $S=\{s_1,\dots,s_m\}$ be a system of contraction similitudes in Banach space and $K(S)$ it's invariant set. We obtain the conditions for the convex hull $H(K)$ of the invariant set to be a finite-sided polyhedron and give an exact estimate for the diameter of $K(S)$ in terms of contraction coefficients of $s_i$.
@article{VNGU_2005_5_2_a1,
     author = {I. B. Davydkin and A. V. Tetenov},
     title = {On convex hulls of self-similar sets},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {21--27},
     year = {2005},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/}
}
TY  - JOUR
AU  - I. B. Davydkin
AU  - A. V. Tetenov
TI  - On convex hulls of self-similar sets
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 21
EP  - 27
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/
LA  - ru
ID  - VNGU_2005_5_2_a1
ER  - 
%0 Journal Article
%A I. B. Davydkin
%A A. V. Tetenov
%T On convex hulls of self-similar sets
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 21-27
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/
%G ru
%F VNGU_2005_5_2_a1
I. B. Davydkin; A. V. Tetenov. On convex hulls of self-similar sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 21-27. http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a1/

[1] Burbaki, Topologicheskie vektornye prostranstva, Izd. inostrannoi literatury, M., 1959

[2] I. B. Davydkin, “Primer vypukloi obolochki samopodobnogo mnozhestva na ploskosti, imeyuschei beskonechnoe chislo storon”, sb. nauch. tr. In-ta gidrodinamiki SO RAN, Dinamika sploshnoi sredy, 120, Novosibirsk, 2002, 22–25

[3] A. V. Tetenov, “Khausdorfova razmernost mnozhestva krainikh tochek samopodobnykh mnozhestv na ploskosti”, sb. nauch. tr. In-ta gidrodinamiki SO RAN, Dinamika sploshnoi sredy, 120, Novosibirsk, 2002, 53–59 | MR | Zbl

[4] K. J. Falconer, Fractal geometry: mathematical foundations and applications, J. Wiley and Sons, New York, 1990 | MR | Zbl

[5] J. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[6] R. Strichartz, Yang Wang, “Geometry of self-affine tiles, I”, Indiana Univ. Math. J., 48 (1999), 1–23 | MR | Zbl