Automorphisms of the group $Sp_n$ ($n\leqslant4$) over a semilocal rings
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 3-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative semilocal ring with invertible elements $2$, $3$, $5$ decomposable in direct sum local rings. It is proved that all automorphisms of the symplectic group $Sp_n(R)$ ($n\leqslant4$) are standard.
@article{VNGU_2005_5_2_a0,
     author = {V. Ya. Bloshchitsyn},
     title = {Automorphisms of the group $Sp_n$ ($n\leqslant4$) over a semilocal rings},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a0/}
}
TY  - JOUR
AU  - V. Ya. Bloshchitsyn
TI  - Automorphisms of the group $Sp_n$ ($n\leqslant4$) over a semilocal rings
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 3
EP  - 20
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a0/
LA  - ru
ID  - VNGU_2005_5_2_a0
ER  - 
%0 Journal Article
%A V. Ya. Bloshchitsyn
%T Automorphisms of the group $Sp_n$ ($n\leqslant4$) over a semilocal rings
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 3-20
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a0/
%G ru
%F VNGU_2005_5_2_a0
V. Ya. Bloshchitsyn. Automorphisms of the group $Sp_n$ ($n\leqslant4$) over a semilocal rings. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 2, pp. 3-20. http://geodesic.mathdoc.fr/item/VNGU_2005_5_2_a0/