On inner constructivizability of admissible sets
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 69-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem of inner constructivizability of admissible sets by means of elements of a bounded rank. For hereditary finite superstructures we find the precise estimates for the rank of inner constructivizability: it is equal $\omega$ for superstructures over finite structures and less or equal 2 otherwise. We introduce examples of structures with hereditary finite superstructures with ranks 0, 1, 2. It is shown that hereditary finite superstructure over field of real numbers has rank 1.
@article{VNGU_2005_5_1_a6,
     author = {A. I. Stukachev},
     title = {On inner constructivizability of admissible sets},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {69--76},
     year = {2005},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - On inner constructivizability of admissible sets
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 69
EP  - 76
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/
LA  - ru
ID  - VNGU_2005_5_1_a6
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T On inner constructivizability of admissible sets
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 69-76
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/
%G ru
%F VNGU_2005_5_1_a6
A. I. Stukachev. On inner constructivizability of admissible sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 69-76. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/

[1] Yu. L. Ershov, Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996

[2] J. Barwise, Admissible sets and structures, Berlin, 1975 | MR

[3] J. R. Buchi, “Weak second order arithmetic and finite automata”, Z. Math. Logik Grundl. Math., 6 (1960), 66–92 | DOI | MR

[4] Y. N. Moschovakis, Elementary induction on abstract structures, Amsterdam, 1974 | MR

[5] R. Montague, “Recursion theory as a branch of model theory”, Proceedings of the Third International Congress for Logic, Methodology and Philosophy of Science (Amsterdam, 1967), 63–86 | MR | Zbl