On inner constructivizability of admissible sets
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 69-76
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem of inner constructivizability of admissible sets by means of elements of a bounded rank. For hereditary finite superstructures we find the precise estimates for the rank of inner constructivizability: it is equal $\omega$ for superstructures over finite structures and less or equal 2 otherwise. We introduce examples of structures with hereditary finite superstructures with ranks 0, 1, 2. It is shown that hereditary finite superstructure over field of real numbers has rank 1.
@article{VNGU_2005_5_1_a6,
author = {A. I. Stukachev},
title = {On inner constructivizability of admissible sets},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {69--76},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/}
}
A. I. Stukachev. On inner constructivizability of admissible sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 69-76. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/