On inner constructivizability of admissible sets
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 69-76
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a problem of inner constructivizability of admissible sets by means of elements of a bounded rank. For hereditary finite superstructures we find the precise estimates for the rank of inner constructivizability: it is equal $\omega$ for superstructures over finite structures and less or equal 2 otherwise. We introduce examples of structures with hereditary finite superstructures with ranks 0, 1, 2. It is shown that hereditary finite superstructure over field of real numbers has rank 1.
@article{VNGU_2005_5_1_a6,
author = {A. I. Stukachev},
title = {On inner constructivizability of admissible sets},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {69--76},
year = {2005},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/}
}
A. I. Stukachev. On inner constructivizability of admissible sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 69-76. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a6/
[1] Yu. L. Ershov, Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996
[2] J. Barwise, Admissible sets and structures, Berlin, 1975 | MR
[3] J. R. Buchi, “Weak second order arithmetic and finite automata”, Z. Math. Logik Grundl. Math., 6 (1960), 66–92 | DOI | MR
[4] Y. N. Moschovakis, Elementary induction on abstract structures, Amsterdam, 1974 | MR
[5] R. Montague, “Recursion theory as a branch of model theory”, Proceedings of the Third International Congress for Logic, Methodology and Philosophy of Science (Amsterdam, 1967), 63–86 | MR | Zbl