Three-dimensional analogs of Cauchy–Riemann and Bitsadze systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 64-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study some boundary value problems for three-dimensional analogs of Cauchy–Riemann and Bitsadze systems in a parallelepiped $D$. Theorems of solvability and uniqueness of a solution from the Sobolev space $W_2^1(D)$ are proved.
@article{VNGU_2005_5_1_a5,
     author = {B. B. Oshorov},
     title = {Three-dimensional analogs of {Cauchy{\textendash}Riemann} and {Bitsadze} systems},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {64--68},
     year = {2005},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a5/}
}
TY  - JOUR
AU  - B. B. Oshorov
TI  - Three-dimensional analogs of Cauchy–Riemann and Bitsadze systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 64
EP  - 68
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a5/
LA  - ru
ID  - VNGU_2005_5_1_a5
ER  - 
%0 Journal Article
%A B. B. Oshorov
%T Three-dimensional analogs of Cauchy–Riemann and Bitsadze systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 64-68
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a5/
%G ru
%F VNGU_2005_5_1_a5
B. B. Oshorov. Three-dimensional analogs of Cauchy–Riemann and Bitsadze systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 64-68. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a5/

[1] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1969 | MR

[2] B. B. Oshorov, Kraevye zadachi dlya nekotorykh modelnykh sistem uravnenii v chastnykh proizvodnykh, preprint NGU, Novosibirsk, 2002