Three-dimensional analogs of Cauchy–Riemann and Bitsadze systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 64-68
Cet article a éte moissonné depuis la source Math-Net.Ru
We study some boundary value problems for three-dimensional analogs of Cauchy–Riemann and Bitsadze systems in a parallelepiped $D$. Theorems of solvability and uniqueness of a solution from the Sobolev space $W_2^1(D)$ are proved.
@article{VNGU_2005_5_1_a5,
author = {B. B. Oshorov},
title = {Three-dimensional analogs of {Cauchy{\textendash}Riemann} and {Bitsadze} systems},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {64--68},
year = {2005},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a5/}
}
B. B. Oshorov. Three-dimensional analogs of Cauchy–Riemann and Bitsadze systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 64-68. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a5/
[1] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1969 | MR
[2] B. B. Oshorov, Kraevye zadachi dlya nekotorykh modelnykh sistem uravnenii v chastnykh proizvodnykh, preprint NGU, Novosibirsk, 2002