A nonlocal boundary value problem for a third-order differential equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 22-30

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlocal boundary value problem \begin{gather*} w_{xxt}+d(x,t)w_t+\eta(x,t)w_{xt}+a(x,t)w_x+b(x,t)w=f(x,t),\\ w(0,t)=\lambda w(l,t),\quad w_x(0,t)=g_0(t),\quad w(x,0)=\varphi(x),\\ 0,\quad 0\end{gather*} is studied. The authors present new conditions for solvability, construct a family of approximate solutions, and establish convergence rate of approximate solutions to an exact solution.
@article{VNGU_2005_5_1_a2,
     author = {T. T. Karakeev and T. D. Omurov},
     title = {A nonlocal boundary value problem for a third-order differential equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {22--30},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/}
}
TY  - JOUR
AU  - T. T. Karakeev
AU  - T. D. Omurov
TI  - A nonlocal boundary value problem for a third-order differential equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 22
EP  - 30
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/
LA  - ru
ID  - VNGU_2005_5_1_a2
ER  - 
%0 Journal Article
%A T. T. Karakeev
%A T. D. Omurov
%T A nonlocal boundary value problem for a third-order differential equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 22-30
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/
%G ru
%F VNGU_2005_5_1_a2
T. T. Karakeev; T. D. Omurov. A nonlocal boundary value problem for a third-order differential equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/