A nonlocal boundary value problem for a third-order differential equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlocal boundary value problem \begin{gather*} w_{xxt}+d(x,t)w_t+\eta(x,t)w_{xt}+a(x,t)w_x+b(x,t)w=f(x,t),\\ w(0,t)=\lambda w(l,t),\quad w_x(0,t)=g_0(t),\quad w(x,0)=\varphi(x),\\ 0,\quad 0\end{gather*} is studied. The authors present new conditions for solvability, construct a family of approximate solutions, and establish convergence rate of approximate solutions to an exact solution.
@article{VNGU_2005_5_1_a2,
     author = {T. T. Karakeev and T. D. Omurov},
     title = {A nonlocal boundary value problem for a third-order differential equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {22--30},
     year = {2005},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/}
}
TY  - JOUR
AU  - T. T. Karakeev
AU  - T. D. Omurov
TI  - A nonlocal boundary value problem for a third-order differential equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2005
SP  - 22
EP  - 30
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/
LA  - ru
ID  - VNGU_2005_5_1_a2
ER  - 
%0 Journal Article
%A T. T. Karakeev
%A T. D. Omurov
%T A nonlocal boundary value problem for a third-order differential equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2005
%P 22-30
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/
%G ru
%F VNGU_2005_5_1_a2
T. T. Karakeev; T. D. Omurov. A nonlocal boundary value problem for a third-order differential equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/

[1] M. Kh. Shkhanukov, “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differentsialnye uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[2] M. Kh. Shkhanukov, “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka i ekstremalnykh svoistvakh ego reshenii”, Differentsialnye uravneniya, 19:1 (1983), 145–152 | MR

[3] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teploprovodnosti s neklassicheskim kraevym usloviem”, Differentsialnye uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[4] A. M. Nakhushev, “Nagruzhennye uravneniya i ikh prilozheniya”, Differentsialnye uravneniya, 19:1 (1983), 86–94 | MR

[5] S. V. Nerpin, G. I. Yuzefovich, V. A. Yangerber, “O raschete nestatsionarnogo dvizheniya vlagi v pochve”, Doklady VASKhNIL, 6 (1966), 2–4 | Zbl

[6] A. Asanov, G. Obodoeva, “Regulyarizatsiya i edinstvennost reshenii lineinykh integralnykh uravnenii Volterra tretego roda”, Issledovaniya po integro-differentsialnym uravneniyam, 6 (1994), 65–74

[7] T. T. Karakeev, “Regulyarizatsiya nelokalnoi granichnoi zadachi dlya psevdoparabolicheskikh uravnenii”, Issledovaniya po integro-differentsialnym uravneniyam, 6 (2003), 179–183

[8] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | Zbl