A nonlocal boundary value problem for a third-order differential equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 22-30
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonlocal boundary value problem
\begin{gather*}
w_{xxt}+d(x,t)w_t+\eta(x,t)w_{xt}+a(x,t)w_x+b(x,t)w=f(x,t),\\
w(0,t)=\lambda w(l,t),\quad w_x(0,t)=g_0(t),\quad w(x,0)=\varphi(x),\\
0,\quad 0\end{gather*}
is studied. The authors present new conditions for solvability, construct a family of approximate solutions, and establish convergence rate of approximate solutions to an exact solution.
@article{VNGU_2005_5_1_a2,
author = {T. T. Karakeev and T. D. Omurov},
title = {A nonlocal boundary value problem for a third-order differential equation},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {22--30},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/}
}
TY - JOUR AU - T. T. Karakeev AU - T. D. Omurov TI - A nonlocal boundary value problem for a third-order differential equation JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2005 SP - 22 EP - 30 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/ LA - ru ID - VNGU_2005_5_1_a2 ER -
T. T. Karakeev; T. D. Omurov. A nonlocal boundary value problem for a third-order differential equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 5 (2005) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/VNGU_2005_5_1_a2/