Global properties of the rational difference equations $x_{n+1}=\frac{\alpha x_n+\gamma y_n}{A x_n+C y_n}$ and $y_{n+1}=\frac{\beta x_n+\delta y_n}{Bx_n+Dy_n}$ in exception handling
We present some results for convergence properties of a system of non linear rational dierence equations subject to multi -point exception handling. The con- vergence of solution to this equation is investigated by introducing an exception handling techniques. We also prove the convergence properties and boundedness concepts for a more general class of rational dierence equation. The obtained results are applied to the analysis of exception handling techniques which is associ- ated with error identication and noise reduction in non linear lters like Extended Kalman Filter associated with non linear dierence equations. Finally some numer- ical examples are showed for exception handling techniques and the same is draw it by MATLAB.
Classification : 39A10 39A11
Keywords: Rational difference equations, Convergence, Exceptions, boundary conditions
@article{VM_2013_15_2_a0,
     author = {Elisabeth S and Jothilakshmi R},
     title = {Global properties of the rational difference equations $x_{n+1}=\frac{\alpha x_n+\gamma y_n}{A x_n+C y_n}$ and $y_{n+1}=\frac{\beta x_n+\delta y_n}{Bx_n+Dy_n}$ in exception handling},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2013_15_2_a0/}
}
TY  - JOUR
AU  - Elisabeth S
AU  - Jothilakshmi R
TI  - Global properties of the rational difference equations $x_{n+1}=\frac{\alpha x_n+\gamma y_n}{A x_n+C y_n}$ and $y_{n+1}=\frac{\beta x_n+\delta y_n}{Bx_n+Dy_n}$ in exception handling
JO  - Visual Mathematics
PY  - 2013
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2013_15_2_a0/
LA  - en
ID  - VM_2013_15_2_a0
ER  - 
%0 Journal Article
%A Elisabeth S
%A Jothilakshmi R
%T Global properties of the rational difference equations $x_{n+1}=\frac{\alpha x_n+\gamma y_n}{A x_n+C y_n}$ and $y_{n+1}=\frac{\beta x_n+\delta y_n}{Bx_n+Dy_n}$ in exception handling
%J Visual Mathematics
%D 2013
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2013_15_2_a0/
%G en
%F VM_2013_15_2_a0
Elisabeth S; Jothilakshmi R. Global properties of the rational difference equations $x_{n+1}=\frac{\alpha x_n+\gamma y_n}{A x_n+C y_n}$ and $y_{n+1}=\frac{\beta x_n+\delta y_n}{Bx_n+Dy_n}$ in exception handling. Visual Mathematics, Tome 15 (2013) no. 2. http://geodesic.mathdoc.fr/item/VM_2013_15_2_a0/