Dynamics in gropus
In this paper we defined a dynamical system (G,f) where G is a group and �f� is a homomorphism from to itself. We established some properties of the set of fixed points and the set of periodic points. We proved that the set of all fixed points is a subgroup of G and it is a strongly invariant subset of G.
Classification : 20H15
@article{VM_2012_14_2_a1,
     author = {V. V. S. Ramachandram},
     title = {Dynamics in gropus},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2012_14_2_a1/}
}
TY  - JOUR
AU  - V. V. S. Ramachandram
TI  - Dynamics in gropus
JO  - Visual Mathematics
PY  - 2012
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2012_14_2_a1/
LA  - en
ID  - VM_2012_14_2_a1
ER  - 
%0 Journal Article
%A V. V. S. Ramachandram
%T Dynamics in gropus
%J Visual Mathematics
%D 2012
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2012_14_2_a1/
%G en
%F VM_2012_14_2_a1
V. V. S. Ramachandram. Dynamics in gropus. Visual Mathematics, Tome 14 (2012) no. 2. http://geodesic.mathdoc.fr/item/VM_2012_14_2_a1/