Heron's Formula from a 4-Dimensional Perspective
We indicate that Heron's formula (which relates the square of the area of a triangle to a quartic function of its edge lengths) can be interpreted as a scissors congruence in 4-dimensional space.
Classification : 20H15
@article{VM_2011_13_1_a1,
     author = {J. Scott Carter and David Mullens},
     title = {Heron's {Formula} from a {4-Dimensional} {Perspective}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2011_13_1_a1/}
}
TY  - JOUR
AU  - J. Scott Carter
AU  - David Mullens
TI  - Heron's Formula from a 4-Dimensional Perspective
JO  - Visual Mathematics
PY  - 2011
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2011_13_1_a1/
LA  - en
ID  - VM_2011_13_1_a1
ER  - 
%0 Journal Article
%A J. Scott Carter
%A David Mullens
%T Heron's Formula from a 4-Dimensional Perspective
%J Visual Mathematics
%D 2011
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2011_13_1_a1/
%G en
%F VM_2011_13_1_a1
J. Scott Carter; David Mullens. Heron's Formula from a 4-Dimensional Perspective. Visual Mathematics, Tome 13 (2011) no. 1. http://geodesic.mathdoc.fr/item/VM_2011_13_1_a1/