Hinged Dissection of a "Rhombic" Solid to the Truncated Icosidodecahedron
For the truncated icosidodecahedron we construct its best ?rhombic approximate? and show that there is a hinged dissection of one to another. By rhombic solid we mean a polyhedron that consists of prolate and oblate golden rhombohedra. In the solution we also use halves of rhombic dodecahedron of the second kind, which in turn consists of two halves of the rhombohedra.
Classification : 52B10
@article{VM_2007_9_2_a0,
     author = {Izidor Hafner},
     title = {Hinged {Dissection} of a {"Rhombic"} {Solid} to the {Truncated} {Icosidodecahedron}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2007_9_2_a0/}
}
TY  - JOUR
AU  - Izidor Hafner
TI  - Hinged Dissection of a "Rhombic" Solid to the Truncated Icosidodecahedron
JO  - Visual Mathematics
PY  - 2007
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2007_9_2_a0/
LA  - en
ID  - VM_2007_9_2_a0
ER  - 
%0 Journal Article
%A Izidor Hafner
%T Hinged Dissection of a "Rhombic" Solid to the Truncated Icosidodecahedron
%J Visual Mathematics
%D 2007
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2007_9_2_a0/
%G en
%F VM_2007_9_2_a0
Izidor Hafner. Hinged Dissection of a "Rhombic" Solid to the Truncated Icosidodecahedron. Visual Mathematics, Tome 9 (2007) no. 2. http://geodesic.mathdoc.fr/item/VM_2007_9_2_a0/