Live3D Animations to Solution of Conway-Radin-Sadun Problem
For each non-snub Archimedean solid with icosahedral symmetry we construct its best ?rhombic approximate?. By rhombic solid we mean a polyhedron that consists of prolate and oblate golden rhombohedra. In the solution we also use halves of rhombic dodecahedron of the second kind, which in turn consists of two halves of the rhombohedra. Some combinations of Archimedean solids are equidecomposable to some combinations of their approximates, and can be dissected to a cube.
Classification : 00A66
@article{VM_2007_9_1_a0,
     author = {Izidor Hafner},
     title = {Live3D {Animations} to {Solution} of {Conway-Radin-Sadun} {Problem}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2007_9_1_a0/}
}
TY  - JOUR
AU  - Izidor Hafner
TI  - Live3D Animations to Solution of Conway-Radin-Sadun Problem
JO  - Visual Mathematics
PY  - 2007
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2007_9_1_a0/
LA  - en
ID  - VM_2007_9_1_a0
ER  - 
%0 Journal Article
%A Izidor Hafner
%T Live3D Animations to Solution of Conway-Radin-Sadun Problem
%J Visual Mathematics
%D 2007
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2007_9_1_a0/
%G en
%F VM_2007_9_1_a0
Izidor Hafner. Live3D Animations to Solution of Conway-Radin-Sadun Problem. Visual Mathematics, Tome 9 (2007) no. 1. http://geodesic.mathdoc.fr/item/VM_2007_9_1_a0/