Ice Crystals Inside the Bell
A recent universal construction of bivariate Gaussian distributions, leading to unforeseen kaleidoscopic decompositions of circular bells in terms of a host of elegant patterns having arbitrary n-fold symmetries, is reviewed. It is shown, via a variety of examples, that such patterns, revealed by iterating simple affine mappings yielding space-filling fractal interpolating functions in three dimensions, encompass the common 6-fold geometric structure encountered in natural ice crystals. It is illustrated how both stellar and sectored crystals may be "grown'' in the "fullness of dimension'' via a variety of iteration schemes, leading to the conclusion that such sets are mathematical designs concealed inside the bell.
Classification : 20H15
@article{VM_2004_6_1_a1,
     author = {Carlos E. Puente and Marta G. Puente},
     title = {Ice {Crystals} {Inside} the {Bell}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2004_6_1_a1/}
}
TY  - JOUR
AU  - Carlos E. Puente
AU  - Marta G. Puente
TI  - Ice Crystals Inside the Bell
JO  - Visual Mathematics
PY  - 2004
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2004_6_1_a1/
LA  - en
ID  - VM_2004_6_1_a1
ER  - 
%0 Journal Article
%A Carlos E. Puente
%A Marta G. Puente
%T Ice Crystals Inside the Bell
%J Visual Mathematics
%D 2004
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2004_6_1_a1/
%G en
%F VM_2004_6_1_a1
Carlos E. Puente; Marta G. Puente. Ice Crystals Inside the Bell. Visual Mathematics, Tome 6 (2004) no. 1. http://geodesic.mathdoc.fr/item/VM_2004_6_1_a1/