Non-linear Fractal Interpolating Functions
We consider two non-linear generalizations of fractal interpolating functions generated from iterated function systems. The first corresponds to fitting data using a Kth-order polynomial, while the second relates to the freedom of adding certain arbitrary functions. An escape-time algorithm that can be used for such systems to generate fractal images like those associated with Julia or Mandelbrot sets is also described.
Classification : 28A80
@article{VM_2002_4_1_a5,
     author = {R. Kobes and H. Letkeman},
     title = {Non-linear {Fractal} {Interpolating} {Functions}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2002_4_1_a5/}
}
TY  - JOUR
AU  - R. Kobes
AU  - H. Letkeman
TI  - Non-linear Fractal Interpolating Functions
JO  - Visual Mathematics
PY  - 2002
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2002_4_1_a5/
LA  - en
ID  - VM_2002_4_1_a5
ER  - 
%0 Journal Article
%A R. Kobes
%A H. Letkeman
%T Non-linear Fractal Interpolating Functions
%J Visual Mathematics
%D 2002
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2002_4_1_a5/
%G en
%F VM_2002_4_1_a5
R. Kobes; H. Letkeman. Non-linear Fractal Interpolating Functions. Visual Mathematics, Tome 4 (2002) no. 1. http://geodesic.mathdoc.fr/item/VM_2002_4_1_a5/