Non-linear Fractal Interpolating Functions
Visual Mathematics, Tome 4 (2002) no. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider two non-linear generalizations of fractal interpolating functions generated from iterated function systems. The first corresponds to fitting data using a Kth-order polynomial, while the second relates to the freedom of adding certain arbitrary functions. An escape-time algorithm that can be used for such systems to generate fractal images like those associated with Julia or Mandelbrot sets is also described.
Classification :
28A80
@article{VM_2002_4_1_a5,
author = {R. Kobes and H. Letkeman},
title = {Non-linear {Fractal} {Interpolating} {Functions}},
journal = {Visual Mathematics},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VM_2002_4_1_a5/}
}
R. Kobes; H. Letkeman. Non-linear Fractal Interpolating Functions. Visual Mathematics, Tome 4 (2002) no. 1. http://geodesic.mathdoc.fr/item/VM_2002_4_1_a5/