Hyperseeing, Hypersculptures, Knots, and Minimal Surfaces
We wish to highlight the fact that seeing is of basic importance in mathematics just as in art. Furthermore, certain mathematical forms can be seen as ideas for generating art forms. We introduce hyperseeing which is a more complete all-around seeing from multiple viewpoints. Hyperseeing is facilitated by viewing a hypersculpture. Hyperseeing is also applied to study knot forms and their corresponding minimal surfaces.
Classification : 57M25 49Q05
@article{VM_2001_3_4_a0,
     author = {Nathaniel A. Friedman},
     title = {Hyperseeing, {Hypersculptures,} {Knots,} and {Minimal} {Surfaces}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2001_3_4_a0/}
}
TY  - JOUR
AU  - Nathaniel A. Friedman
TI  - Hyperseeing, Hypersculptures, Knots, and Minimal Surfaces
JO  - Visual Mathematics
PY  - 2001
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2001_3_4_a0/
LA  - en
ID  - VM_2001_3_4_a0
ER  - 
%0 Journal Article
%A Nathaniel A. Friedman
%T Hyperseeing, Hypersculptures, Knots, and Minimal Surfaces
%J Visual Mathematics
%D 2001
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2001_3_4_a0/
%G en
%F VM_2001_3_4_a0
Nathaniel A. Friedman. Hyperseeing, Hypersculptures, Knots, and Minimal Surfaces. Visual Mathematics, Tome 3 (2001) no. 4. http://geodesic.mathdoc.fr/item/VM_2001_3_4_a0/