Antisymmetry and Modularity in Ornamental Art
A recapitulation of the development of antisymmetry theory is given in the introduction. "Black-white" ornamental motifs occurring in ornamental art are classified by using symmetry criteria, according to the corresponding antisymmetry groups. Antisymmetry groups of rosettes, friezes and ornaments are illustrated by examples from Neolithic and ancient ornamental art. The principle of modularity is used in order to explain possible methods of construction of certain ornaments, and to reconstruct some of them only from their parts preserved in archaeological material.
Classification : 20H15
@article{VM_2001_3_2_a12,
     author = {Ljiljana Radovic and Slavik Jablan},
     title = {Antisymmetry and {Modularity} in {Ornamental} {Art}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2001_3_2_a12/}
}
TY  - JOUR
AU  - Ljiljana Radovic
AU  - Slavik Jablan
TI  - Antisymmetry and Modularity in Ornamental Art
JO  - Visual Mathematics
PY  - 2001
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2001_3_2_a12/
LA  - en
ID  - VM_2001_3_2_a12
ER  - 
%0 Journal Article
%A Ljiljana Radovic
%A Slavik Jablan
%T Antisymmetry and Modularity in Ornamental Art
%J Visual Mathematics
%D 2001
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2001_3_2_a12/
%G en
%F VM_2001_3_2_a12
Ljiljana Radovic; Slavik Jablan. Antisymmetry and Modularity in Ornamental Art. Visual Mathematics, Tome 3 (2001) no. 2. http://geodesic.mathdoc.fr/item/VM_2001_3_2_a12/