Hyperseeing, Hypersculptures and Space Curves
Our purpose is to relate hyperseeing and hypersculptures to space curve sculptures derived from knots. We will include an introduction so that the paper is self-contained, as well as discuss several examples.
Classification : 14H50
@article{VM_2001_3_1_a0,
     author = {Nat Friedman},
     title = {Hyperseeing, {Hypersculptures}  and {Space} {Curves}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2001_3_1_a0/}
}
TY  - JOUR
AU  - Nat Friedman
TI  - Hyperseeing, Hypersculptures  and Space Curves
JO  - Visual Mathematics
PY  - 2001
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2001_3_1_a0/
LA  - en
ID  - VM_2001_3_1_a0
ER  - 
%0 Journal Article
%A Nat Friedman
%T Hyperseeing, Hypersculptures  and Space Curves
%J Visual Mathematics
%D 2001
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2001_3_1_a0/
%G en
%F VM_2001_3_1_a0
Nat Friedman. Hyperseeing, Hypersculptures  and Space Curves. Visual Mathematics, Tome 3 (2001) no. 1. http://geodesic.mathdoc.fr/item/VM_2001_3_1_a0/