Flows of Thin Perfectly Rigid-Plastic Bodies: Dynamic Modes and Necking
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2024), pp. 94-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The presented review consists of two parts. The first one is devoted to research generalizing the classical Prandtl problem in the case of taking into account the inertia of the convergence of rigid plates and dynamic effects occurring in a thin perfect rigid plastic layer. The second part examines the work related to the formation and development of the neck in plastic materials under quasi-static and dynamic loading. In particular, attention is paid to thin solids with a perturbed boundary shape, which have technological significance. The presence of a small geometric parameter allows the use of asymptotic methods.
@article{VMUMM_2024_6_a11,
     author = {D. V. Georgievskii and I. M. Tsvetkov},
     title = {Flows of {Thin} {Perfectly} {Rigid-Plastic} {Bodies:} {Dynamic} {Modes} and {Necking}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {94--102},
     year = {2024},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_6_a11/}
}
TY  - JOUR
AU  - D. V. Georgievskii
AU  - I. M. Tsvetkov
TI  - Flows of Thin Perfectly Rigid-Plastic Bodies: Dynamic Modes and Necking
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 94
EP  - 102
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_6_a11/
LA  - ru
ID  - VMUMM_2024_6_a11
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%A I. M. Tsvetkov
%T Flows of Thin Perfectly Rigid-Plastic Bodies: Dynamic Modes and Necking
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 94-102
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_6_a11/
%G ru
%F VMUMM_2024_6_a11
D. V. Georgievskii; I. M. Tsvetkov. Flows of Thin Perfectly Rigid-Plastic Bodies: Dynamic Modes and Necking. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2024), pp. 94-102. http://geodesic.mathdoc.fr/item/VMUMM_2024_6_a11/

[1] Prandtl L., “Anwendungsbeispiele zu einem Henckyschen Satzüber das plastische Gleichgewicht”, ZAMM, 14:6 (1923), 401–406 ; Прандтль Л., “Примеры применения теоремы Генки к равновесию пластических тел”, Теория пластичности, ИЛ, М., 1948, 102–113 | DOI

[2] Geiringer H., Prager W., “Mechanik isotroper Körper im plastischen Zustand”, Ergeb. Exakten Naturwis, 13 (1934), 310–363

[3] Ilyushin A.A., Trudy, v. 4, Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniya, Fizmatlit, M., 2009

[4] Bykovtsev G.I., “O szhatii plasticheskogo sloya zhestkimi sherokhovatymi plitami s uchetom sil inertsii”, Izv. AN SSSR. OTN. Mekhanika i mashinostroenie, 1960, no. 6, 140–142 | Zbl

[5] Annin B.D., “Simmetriinyi analiz uravnenii plasticheskogo techeniya Mizesa”, Uprugost i neuprugost, Izd-vo MGU, M., 2011, 101–105

[6] Kiiko I.A., Kadymov V.A., “Obobscheniya zadachi L. Prandtlya o szhatii polosy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2003, no. 4, 50–56 | MR | Zbl

[7] Georgievskii D.V., “Asimptoticheskie razlozheniya i vozmozhnosti otkaza ot gipotez v zadache Prandtlya”, Izv. RAN. Mekhan. tverdogo tela, 2009, no. 1, 83–93

[8] Nayar E., “Nekotorye ploskie inertsionnye techeniya plasticheskikh materialov”, Mekhanika sploshnykh sred, Izd-vo Bolgar. AN, Sofiya, 1968, 269–277

[9] Georgievskii D.V., “Asimptoticheskoe integrirovanie zadachi Prandtlya v dinamicheskoi postanovke”, Izv. RAN. Mekhan. tverdogo tela, 2013, no. 1, 97–105

[10] Georgievskii D.V., Mueller W.H., Abali B.E., “Thin-layer inertial effects in plasticity and dynamics in the Prandtl problem”, ZAMM, 99:12 (2019), 1–11 | DOI | MR

[11] Georgievskii D.V., “Asimptoticheskii analiz plasticheskogo techeniya vdol obrazuyuschei v tonkom tsilindricheskom sloe”, Prikl. matem. i tekhn. fiz., 51:5 (2010), 111–119 | MR | Zbl

[12] Georgievskii D.V., “Szhatie–stok asimptoticheski tonkogo idealno zhestkoplasticheskogo sfericheskogo sloya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 6, 65–68

[13] Shabaikin R.R., “Dinamicheskie effekty deformirovaniya tonkogo plasticheskogo sloya mezhdu sblizhayuschimisya zhestkimi tsilindrami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 29–37

[14] Shabaikin R.R., “Dinamicheskie effekty deformirovaniya pri szhatii–stoke asimptoticheski tonkogo idealno zhestkoplasticheskogo sfericheskogo sloya”, Izv. RAN. Mekhan. tverdogo tela, 2020, no. 2, 22–27 | DOI

[15] Timoshenko S.P., Istoriya nauki o soprotivlenii materialov s kratkimi svedeniyami iz istorii teorii uprugosti i teorii sooruzhenii, Gostekhizdat, M., 1957

[16] Considére M., “Mémoire sur l'emploi du fer et de l'acier dans les Constructions”, Ann. Ponts et Chaussées, 9 (1885), 574–775

[17] Kachanov L.M., Osnovy mekhaniki razrusheniya, Nauka, M., 1974

[18] Malinin N.N., Prikladnaya teoriya plastichnosti i polzuchesti, Mashinostroenie, M., 1975

[19] Nadai A., Plastichnost i razrushenie tverdykh tel, v. 1, IL, M., 1954

[20] Kolpak E.P., Ustoichivost bezmomentnykh obolochek pri bolshikh deformatsiyakh, Izd-vo S.-Peterb. gos. un-ta, SPb., 2000

[21] Kovalchuk B.I., “K voprosu o potere ustoichivosti plasticheskogo deformirovaniya obolochek”, Probl. prochnosti, 1983, no. 5, 11–16

[22] Lyudvik P., “Osnovy tekhnologicheskoi mekhaniki”, Raschety na prochnost. Mashinostroenie, 1971, no. 15, 130–168

[23] Khristenko I.N., Paschenko A.A., “Uslovie obrazovaniya sheiki pri rastyazhenii stalnykh obraztsov”, Izv. AN SSSR. Metally, 1987, no. 6, 105–107

[24] Shneiderman A.Sh., “O raspredelenii deformatsii v sheike obraztsa pri rastyazhenii”, Zavod. lab., 1975, no. 6, 728–730

[25] Matyunin V.M., “Osobennosti perekhoda ravnomernoi deformatsii v sosredotochennuyu”, Tr. MEI, 1976, no. 305, 76–78

[26] Presnyakov A.A., Lokalizatsiya plasticheskoi deformatsii, Mashinostroenie, M., 1988

[27] Presnyakov A.A., Ochag deformatsii pri obrabotke metallov davleniem, Nauka, Alma-Ata, 1988

[28] Fridman Ya.B., Mekhanicheskie svoistva metallov, v. 1, Mashinostroenie, M., 1974

[29] Bazhenov V.G., Osetrov S.L., Osetrov D.L., “Analiz zakonomernostei rastyazheniya uprugoplasticheskikh obraztsov i obrazovaniya sheiki s uchetom kraevykh effektov”, Prikl. mekhan. i tekhn. fiz., 59:4 (2018), 133–140

[30] Nadai A., Plastichnost i razrushenie tverdykh tel, v. 2, IL, M., 1969

[31] Bridzhmen P., Issledovanie bolshikh plasticheskikh deformatsii i razryva, IL, M., 1955

[32] Kaibyshev O.D., Plastichnost i sverkhplastichnost metallov, Metallurgiya, M., 1975

[33] Shanly F.R., “Tensile instability (necking) of ductile materials”, Aerospace Engng., 20:12 (1961), 55–61

[34] Kenzhaliev B.K., Chernoglazova T.V., Mofa N.N., Lokalizatsiya plasticheskoi deformatsii i neravnovesnye strukturno-deformatsionnye prevrascheniya, Almaty, 2004

[35] Vildeman V.E., Lomakin E.V., Tretyakova T.V., Tretyakov M.P., “Zakonomernosti razvitiya neodnorodnykh polei pri zakriticheskom deformirovanii stalnykh obraztsov v usloviyakh rastyazheniya”, Izv. RAN. Mekhan. tverdogo tela, 2016, no. 5, 132–139

[36] Mofa N.N., Presnyakov A.A., Chernoglazova T.V., “Vliyanie razmerov obraztsov na pokazateli prochnosti beskislorodnoi medi”, Probl. prochnosti, 1984, no. 9, 64–67

[37] Rusinek A., Zaera R., Klepaczko J.R., “Analysis of inertia and scale effects on dynamic neck formation during tension of sheet steel”, Acta Materialia, 53:20 (2005), 5387–5400

[38] Osovski S., Rittel D., Rodriguez-Martinez J.A., Zaera R., “Dynamic tensile necking: Influence of specimen geometry and boundary conditions”, Mech. Materials, 2013, no. 63, 1–13 | DOI

[39] Berezhnoi D.V., Paimushin V.N., “O dvukh postanovkakh uprugoplasticheskikh zadach i teoreticheskoe opredelenie mesta obrazovaniya sheiki v obraztsakh pri rastyazhenii”, Prikl. matem. i mekhan., 75:4 (2011), 447–462 | MR

[40] Osintsev A.V., Plotnikov A.S., Morozov E.M., Lubkova E.Yu., “K voprosu o meste obrazovaniya sheiki pri rastyazhenii tsilindricheskikh obraztsov”, Pisma o materialakh, 7:3 (2017), 260–265

[41] Vasin R.A., “Opredelyayuschie sootnosheniya teorii plastichnosti”, Itogi nauki i tekhniki. Ser. Mekhanika deformiruemogo tverdogo tela, 21, VINITI, M., 1990, 3–75

[42] Zubchaninov V.G., Matematicheskaya teoriya plastichnosti, Monografiya, Tver. gos. tekhn. un-t, Tver, 2002

[43] Revuzhenko A.F., Chanyshev A.I., Shemyakin E.I., Matematicheskie modeli uprugoplasticheskikh tel. Aktualnye problemy vychislitelnoi matematiki i matematicheskogo modelirovaniya, Nauka, Novosibirsk, 1985

[44] Ilyushin A.A., Plastichnost, v. 1, Uprugo-plasticheskie deformatsii, Gostekhizdat, M., 1948

[45] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, Izd-vo MGU, M., 1995 | MR

[46] Bonet J., Wood R.D., Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[47] Ishlinskii A.Yu., Ivlev D.D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001

[48] Onat E., Prager W., “The necking of a tension specimen in plane plastic flow”, J. Appl. Phys., 25:4 (1954), 491–493 | DOI | MR | Zbl

[49] Davidenkov N.N., Spiridonova N.I., “Analiz napryazhennogo sostoyaniya v sheike rastyanutogo obraztsa”, Zavod. lab., XI (1945), 583–593

[50] Ishlinskii A.Yu., “Rastyazhenie beskonechno dlinnoi idealno plasticheskoi polosy peremennogo secheniya”, Dokl. AN USSR, 1958, no. 1, 12–15 | Zbl

[51] Ershov L.V., “Ob obrazovanii sheiki v ploskom obraztse pri rastyazhenii”, Prikl. matem. i tekhn. fiz., 1961, no. 1, 135–137

[52] Ivlev D.D., Mekhanika plasticheskikh sred, v. 1, FIZMATLIT, M., 2001

[53] Ivlev D.D., Mekhanika plasticheskikh sred, v. 2, FIZMATLIT, M., 2002

[54] Georgievskii D.V., “Odnoosnoe rastyazhenie tonkogo zhestkoplasticheskogo lista pri nalichii sheiki”, Dokl. RAN, 463:2 (2015), 152–154 | DOI | MR

[55] Georgievskii D.V., Pobedrya B.E., “Asymptotic analysis of evolution of a neck in extended thin rigid plastic solids”, Rus. J. Math. Phys., 23:2 (2015), 200–206 | DOI | MR

[56] Georgievskii D.V., “Dinamicheskie rezhimy rastyazheniya sterzhnya iz idealno zhestkoplasticheskogo materiala”, Prikl. mekhan. i tekhn. fiz., 62:5 (2021), 119–130 | DOI | Zbl

[57] Tsvetkov I.M., “Dinamicheskoe rastyazhenie lista iz idealno zhestkoplasticheskogo materiala”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 6, 51–60 | DOI

[58] Tsvetkov I.M., “Dinamicheskoe osesimmetrichnoe rastyazhenie tonkogo kruglogo idealno zhestkoplasticheskogo sloya”, Izv. RAN. Mekhan. tverdogo tela, 2023, no. 5, 79–88 | DOI | Zbl

[59] Tsvetkov I.M., “Dinamicheskie rezhimy dvukhosnogo rastyazheniya tonkoi idealno zhestkoplastichnoi pryamougolnoi plastiny”, Prikl. matem. i mekhan., 87:4 (2023), 684–695 | DOI | Zbl

[60] Tsvetkov I.M., “O dinamicheskom rastyazhenii tonkogo kruglogo idealno zhestkoplasticheskogo sloya iz transversalno-izotropnogo materiala”, Differents. uravneniya, 60:3 (2024), 375–385 | DOI | MR

[61] Vabischevich P.N., Chislennye metody resheniya zadach so svobodnoi granitsei, Izd-vo MGU, M., 1987 | MR

[62] Meirmanov A.M., Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR

[63] Banko V.A., Georgievskii D.V., “Kvaziavtomodelnye resheniya nekotorykh parabolicheskikh zadach v teorii vyazkoplasticheskogo techeniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 4, 39–45 | DOI

[64] Pukhnachev V.V., “Ploskaya statsionarnaya zadacha so svobodnoi granitsei dlya uravnenii Nave–Stoksa”, Prikl. mekhan. i tekhn. fiz., 1972, no. 3, 91–102

[65] Krasovskii Yu.P., Lavrentev M.A., Moiseev N.N., Ter-Krikorov A.M., Shabat A.B., “Matematicheskie voprosy gidrodinamiki zhidkosti so svobodnymi granitsami”, Prikl. mekhan. i tekhn. fiz., 1963, no. 4, 3–16 | MR

[66] Ilyushin A.A., Trudy, v. 2, Plastichnost, Fizmatlit, M., 2004

[67] Belov N.A., Kadymov V.A., “Analiz kraevoi zadachi techeniya plasticheskogo sloya mezhdu sblizhayuschimisya zhestkimi plitami”, Izv. RAN. Mekhan. tverdogo tela, 2011, no. 1, 46–58

[68] Nayfeh A.H., Introduction to Perturbation Techniques, Wiley, N.Y., 1981 | MR | Zbl

[69] Koul D., Metody vozmuschenii v prikladnoi matematike, Mir, M., 1972 | MR

[70] Puankare A., Izbrannye trudy, V 3 T., v. 1, Novye metody nebesnoi mekhaniki, Nauka, M., 1971 | MR

[71] Ivlev D.D., Ershov L.V., Metod vozmuschenii v teorii uprugoplasticheskogo tela, Nauka, M., 1985

[72] Ivlev D.D., Ershov L.V., “Priblizhennoe reshenie ploskikh uprugoplasticheskikh zadach teorii idealnoi plastichnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 1957, no. 5, 17–26

[73] Minaeva N.V., “O primenenii metoda vozmuschenii v mekhanike deformiruemykh tel”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 1, 37–39

[74] Bauer S.M., Smirnov A.L., Tovstik P.E., Filippov S.B., Asimptoticheskie metody v mekhanike tverdogo tela, NITs “Regulyarnaya i khaoticheskaya dinamika”; Institut kompyuternykh issledovanii, M.–Izhevsk, 2007

[75] Argatov I.I., Vvedenie v asimptoticheskoe modelirovanie v mekhanike, Politekhnika, SPb., 2004

[76] Guz A., Nemish Yu., Metod vozmuscheniya formy granitsy v mekhanike sploshnykh sred, Vysshaya shkola, M., 1989

[77] Khromov A.I., Zhigalkin K.A., “Matematicheskoe modelirovanie protsessa razrusheniya materialov”, Dalnevost. matem. zhurn., 3:1 (2002), 93–101 | MR

[78] Kachanov L.M., Osnovy teorii plastichnosti, Nauka, M., 1969

[79] Khill R., Matematicheskaya teoriya plastichnosti, Gostekhizdat, M., 1956

[80] Radaev Yu.N., Bakhareva Yu.N., “Ob odnom chislennom metode resheniya osesimmetrichnoi zadachi teorii plastichnosti”, Vestn. Samar. gos. un-ta. Estestvennonauchnaya seriya, 2004, Vtoroi spets. vyp., 52–64 | Zbl

[81] Segal V.M., “Plasticheskoe techenie pri rastyazhenii osesimmetrichnykh obraztsov s sheikoi”, Prikl. mekhan. i tekhn. fiz., 1969, no. 2, 141–144

[82] Segal V.M., Tekhnologicheskie zadachi teorii plastichnosti, Nauka i tekhnika, Minsk, 1977

[83] Jones S.E., Gillis P.P., “Analysis of a plane strain neck in a flat sheet”, Mech. Materials, 3:1 (1984), 35–40 | DOI

[84] Ivlev D.D., Artemov M.A, “Ob idealno plasticheskom sostoyanii prizmaticheskikh tel peremennogo pryamougolnogo secheniya”, Dokl. RAN, 353:1 (1997), 47–50 | Zbl

[85] Aryshenskii Yu.M., Teoriya listovoi shtampovki anizotropnykh materialov, Izd-vo Saratov. un-ta, Saratov, 1974

[86] Zhigalkin V.M., Rynkov B.A., “Anizotropnoe uprochnenie ortotropnogo materiala”, Prikl. mekhan. i tekhn. fiz., 1995, no. 5, 81–86

[87] Annin B.D., Ostrosablin N.I., “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhan. i tekhn. fizika, 48:6 (2008), 131–151

[88] Pobedrya B.E., “Ob anizotropii v teorii techeniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 1985, no. 6, 66–70 | Zbl

[89] Georgievskii D.V., “Anizotropnye skalyarnye opredelyayuschie sootnosheniya i sootvetstvuyuschie im modeli vyazkoplasticheskogo techeniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 5, 54–57 | Zbl

[90] Vasileva A.M., Ivlev D.D., Mikhailova M.V., “O rastyazhenii polosy i brusa peremennogo pryamougolnogo poperechnogo secheniya iz idealno plasticheskogo materiala”, Izv. RAN. Mekhan. tverdogo tela, 1996, no. 6, 79–87

[91] Mironov B.G., “O predelnom sostoyanii idealno plasticheskogo anizotropnogo brusa i plity”, Izv. RAN. Mekhan. tverdogo tela, 2000, no. 5, 13–20

[92] Molinari A., Mercier S., Jacques N., “Dynamic failure of ductile materials”, Proc. IUTAM, 10 (2014), 201–220 | DOI

[93] Mercier S., Granier N., Molinari A., Llorca F., Buy F., “Multiple necking during the dynamic expansion of hemispherical metallic shells, from experiments to modeling”, J. Mech. Phys. Solids, 58 (2010), 955–982 | DOI | MR | Zbl

[94] Grady D.E, Benson D.A., “Fragmentation of metal rings by electromagnetic loading”, Exp. Mech., 12 (1983), 393–400 | DOI

[95] Shenoy V., Freund L., “Necking bifurcations during high strain rate extension”, J. Mech. Phys. Solids, 47 (1999), 2209–2233 | DOI | Zbl

[96] Guduru P., Freund L., “The dynamics of multiple neck formation and fragmentation in high rate extension of ductile materials”, Int. J. Solids and Struct., 39 (2002), 5615–5632 | DOI | Zbl

[97] El Ma{\"i} S., Mercier S., Petit J., Molinari A., “An extension of the linear stability analysis for the prediction of multiple necking during dynamic extension of round bar”, Int. J. Solids and Struct., 51:21/22 (2014), 3491–3507

[98] Shahbeyk S., Rahiminejad D., Petrinic N., “Local solution of the stress and strain fields in the necking section of cylindrical bars under uniaxial tension”, Eur. J. Mech. A/Solids, 29:2 (2010), 230–241 | DOI | Zbl

[99] Mercier S., Molinari A., “Analysis of multiple necking in rings under rapid radial expansion”, Int. J. Impact Eng., 30 (2004), 403–419 | DOI

[100] Jouve D., “Analytic study of plastic necking instabilities during plane tension tests”, Eur. J. Mech., 2013, no. 39, 180–196 | DOI | MR | Zbl

[101] Jouve D., “Analytic study of the onset of plastic necking instabilities during biaxial tension tests on metallic plates”, Eur. J. Mech. A/Solids, 50 (2015), 59–69 | DOI | MR | Zbl

[102] Hutchinson J.W., Neale K.W., “Influence of strain-rate sensitivity on necking under uniaxial tension”, Acta Metall, 1977, no. 25, 839–846 | DOI

[103] Hutchinson J., Neale K., Needleman A., “Sheet necking - I. Validity of plane stress assumptions of the long wavelength approximation”, Mech. Sheet Metal Forming, 1978, no. 8, 111–126 | DOI

[104] Hutchinson J., Hill R., “Bifurcation phenomena in the plane tension test”, J. Mech. and Phys. Solids, 23:4 (1975), 239–264 | MR | Zbl

[105] Xue Z., Vaziri A., Hutchinson J., “Material aspects of dynamic neck retardation”, J. Mech. and Phys. Solids, 56:1 (2008), 93–113 | DOI | Zbl

[106] Marvi-Mashhadi M., Rodriguez-Martinez J., “Multiple necking patterns in elasto-plastic rings subjected to rapid radial expansion: The effect of random distributions of geometric imperfections”, Impact Engng., 144 (2020), 103661 | DOI

[107] Rotbaum Y., Osovski S., Rittel D., “Why does necking ignore notches in dynamic tension?”, J. Mech. and Phys. Solids, 78 (2015), 173–185 | DOI | MR

[108] Rittel D., Rotbaum Y., Rodriguez-Martinez J.A., “Dynamic Necking of Notched Tensile Bars: An Experimental Study”, Exper. Mech., 2014, no. 54, 1099–1109 | DOI

[109] Needleman A., “Effect of size on necking of dynamically loaded notched bars”, Mech. Materials, 116 (2018), 180–188 | DOI