Dependence of the size of attainability domain on parameters in a second order linear system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 73-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The oscillating linear time-invariant system of second order with time-varying bounded control is considered. The reachable set size is studied with respect to bounded parameters of the system. The reachable set size is characterized by a distance from the origin to the most or least distant set point in the Euclidean norm. For one case study, the set size was found to be monotonous with respect to all parameters of the system.
@article{VMUMM_2024_5_a9,
     author = {A. S. Klyuev},
     title = {Dependence of the size of attainability domain on parameters in a second order linear system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {73--77},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a9/}
}
TY  - JOUR
AU  - A. S. Klyuev
TI  - Dependence of the size of attainability domain on parameters in a second order linear system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 73
EP  - 77
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a9/
LA  - ru
ID  - VMUMM_2024_5_a9
ER  - 
%0 Journal Article
%A A. S. Klyuev
%T Dependence of the size of attainability domain on parameters in a second order linear system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 73-77
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a9/
%G ru
%F VMUMM_2024_5_a9
A. S. Klyuev. Dependence of the size of attainability domain on parameters in a second order linear system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 73-77. http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a9/

[1] Kharitonov V.L., “Ob asimptoticheskoi ustoichivosti polozheniya ravnovesiya semeistva sistem lineinykh differentsialnykh uravnenii”, Differents. uravneniya, 14:11 (1978), 2086–2088

[2] Sadovnichii V.A., Aleksandrov V.V., Aleksandrova T.B., Konovalenko I.S., Soto E., Tikhonova K.V., Shulenina N.E., “Galvanicheskaya korrektsiya neironnogo upravleniya ustanovkoi vzora. Chast 1”, Vestn. Mosk. un-ta. Matem. Mekhan., 2021, no. 6, 41–47

[3] Aleksandrov V.V., Bugrov D.I., Zhermolenko V.N., Konovalenko I.S., “Mnozhestvo dostizhimosti i robastnaya ustoichivost vozmuschaemykh kolebatelnykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2021, no. 1, 67–71

[4] Formalskii A.M., Upravlyaemost i ustoichivost sistem s ogranichennymi resursami, Nauka, M., 1974

[5] Zhermolenko V.N., “K zadache Bulgakova o maksimalnom otklonenii kolebatelnoi sistemy vtorogo poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 1980, no. 2, 87–91

[6] Aleksandrov V.V., “K zadache Bulgakova o nakoplenii vozmuschenii”, Dokl. AN SSSR. Ser. Kibernetika, 186:3 (1969), 526–528